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Abstract

This paper analyzes the factors influencing the adoption of stablecoins and their susceptibility
to runs, offering insights for risk assessment and appropriate regulation, as well as new testable
implications. When payment preferences are heterogeneous, a wider adoption of stablecoins
is associated with a destabilizing composition effect. Positive network effects mitigate the
destabilizing composition effect, but may undermine the role of bank deposits in payments.
Since the marginal adopter of stablecoins does not internalize these effects, the regulatory
concern about excessive adoption is justified. The introduction of a portfolio choice by the
stablecoin issuer and moral hazard provide additional lessons for reserve management and
disclosure. Factors that increase the issuer’s income from fees and seigniorage promote stability,
as do congestion effects. A stablecoin lending market promotes both stability and adoption, if
it is not undermined by speculation.
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1 Introduction

Stablecoins are a new form of digital private money that promises a stable and secure way to
park funds in the crypto universe. However, stablecoin issuers are vulnerable to runs triggered
by negative information about the quality and liquidity of their reserves, as well as custodial,
operational, and technological risks (e.g. cyber risk). The goal of this paper is to explore the
factors that determine stablecoin adoption and fragility, as well as the relationship between the
two. The key research questions are, first, how is the fragility of stablecoins influenced by their
adoption? Second, what conditions can lead to excessive stablecoin adoption? And third, how is
fragility affected by various factors such as payment preferences, network effects, transaction costs,
stablecoin lending, and moral hazard problems faced by issuers? To answer these questions and to
provide insights for the risk assessment and appropriate regulation, I develop a theoretical model.

The dominant stablecoins are pegged one-to-one to the US dollar and reside on a blockchain.
This allows them to serve as a critical link between the rapidly evolving crypto universe and
traditional financial markets (Barthelemy, Gardin and Nguyen 2021; Kim 2022). Figure 1 shows
the evolution of the market capitalization of the top stablecoins since January 2020. After a
breakneck expansion in 2021, when the market grew nearly five-fold, the pace of growth slowed
down markedly, followed by a correction during the crypto market turmoil in May 2022, when the
total market capitalization dropped from close to 190bn to around 150bn US dollars after a wave
of redemptions. Following a brief recovery, the renewed crypto market turmoil in November 2022
during the failure of the FTX crypto exchange and lawsuits affecting the issuance and exchange of
USD Coin (USDC) and Binance Coin (BUSD), which are associated with the Binance and Coinbase
cyptocurrency exchanges, prevented the stablecoins market to continue its expansion.! While the
second and third largest stablecoins USDC and BUSD suffered large outflows, the largest stablecoin
Tether (UST) has gained market share and reached an all-time high with a market capitalization
of more than 83bn US dollars in July 2023. As a result, the already concentrated stablecoin market
has become even more concentrated, with a Herfindahl-Hirschman Index of 50%.

Unlike Bitcoin or Ether, which have no intrinsic value and are highly volatile, the leading
stablecoins are backed by fiat currency or by other assets, allowing crypto investors to park their
funds and to reduce trading costs across cryptocurrency exchanges. Stablecoin arrangements can
also offer greater transaction speed and privacy, which is attractive for illicit uses. Other use
cases include low-cost remittances and potentially access to a substitute for volatile fiat currencies
under devaluation pressure, as well as an escape from financial repression. This makes stablecoins
suitable as a form of private money, with a potential for wider adoption in cross-border transactions
and financial markets more generally. It is, however, unclear whether today’s stablecoins can serve

as an effective and widely accepted medium of exchange beyond certain use cases due to their

In February 2023, New York regulators halted the issuance of BUSD, while the U.S. Securities and Ex-
change Commission (SEC) and the U.S. Commodity Futures Trading Commission (CFTC) filed lawsuits against Bi-
nance (see https://www.cftc.gov/PressRoom/PressReleases/8680-23, https://www.sec.gov/news/
press—release/2023-101) and Coinbase (see https://www.sec.gov/news/press—release/2023-102).
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Figure 1: End of month market capitalization over the period from January 2020 to July 2023, when
the combined end-of-period capitalization stood at around $125bn. Source: coingecko.com.

fragility and technical limitations in payments processing.>

Financial regulators were alerted to stablecoins after social media platform Facebook announced
in June 2019 that it would launch its own digital currency called "Libra," sparking extensive policy
discussion (G7 2019; FSB 2019; Brainard 2019; Cceuré 2019; Adrian and Mancini-Griffoli 2019).
While Facebook abandoned the project in January 2022 after facing regulatory headwinds, the
potential for widespread adoption of stablecoins, their fragility, as well as their impact on the
stability of traditional financial markets and the monetary system remains a major concern for
policymakers, as reflected in recent lawsuits by U.S. regulators (see footnote 1).

There have already been instances of runs against stablecoins. Most prominently, the destructive
run against the algorithmic stablecoin Terra USD. Up until May 2022, UST has been trading in a
narrow band around its peg to the US dollar for almost one year, which includes a period of rapid
growth in its market capitalization from 2.8bn US dollars at the end of October 2021 to 18.7bn
US dollars in early May 2022. On May 9 UST suffered a wave of redemptions that resulted in the
unmooring of the peg to the dollar, the halting of the Terra blockchain and a rapid collapse of the
market price to near zero over the next few days.® After its collapse, UST never recovered, as can
be seen in Figure 1. On May 12, USDT, the largest stablecoin that is mostly backed by fiat currency,
also suffered a short-lived 5% price drop after experiencing a 3-4bn US dollars redemption wave.
More recently, the fully backed USDC broke its peg and sank to 0.87 cents on March 11, 2023 after
the collapse of Silicon Valley Bank (SVB). The temporary unpegging happened for fundamental

2See Ho, Darbha, Gorelkina and Garcia (2022) for a Bank of Canada review of stablecoin use cases, risks and benefits.
3See Figure Al in the Appendix and Liu, Makarov and Schoar (2023) for a detailed analysis of the run on UST.
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reasons, as the USDC issuer Circle held 3.3bn US dollars of its reserves at SVB.# Ultimately, the
swift announcement by U.S. regulators to protect all uninsured SVB deposits came before Circle

had to begin meeting redemption requests, potentially saving USDC from a destructive run.

The risk of concentrated holdings of uninsured deposits is only one of the risks facing today’s
stablecoins. Most stablecoin issuers engage in some degree of maturity and liquidity transforma-
tion, similar to money market funds. In addition, issuers hold assets with varying degrees of credit
risk. The actual risk exposure is often difficult for coin holders to assess due to a lack of detailed
and verifiable information about issuers’ reserves. A case in point is the largest stablecoin, Tether,
which is pegged to the US dollar. While Tether claims that each "token is always 100% backed by
our reserves," this has been challenged in court,® and the transparency about the asset composition
and risk profile remains limited (see Appendix A.2 for more details). Since Tether’s reserves are
located in Cayman Islands, they are not verifiable and the bankruptcy process is unclear. Also
custodial and cyber risks create vulnerablilities. Thus, the value of stablecoins is information

sensitive (Dang, Gorton and Holmstrom 2021); in stark contrast to insured bank deposits.®

I develop a theoretical model that captures the fragility of stablecoins stemming from concerns
about the quality of the issuer’s assets and potential exposures to other risk. The theory allows to
study the determinants of stablecoin adoption and fragility, as well as aspects related to disclosure
of information about the quality of assets and the appropriate regulation of stablecoins. I model
a stablecoin run as a global game of regime change (Carlsson and van Damme 1993; Vives 2005).
Global games have been used extensively to study bank runs, currency attacks and debt runs.
This class of models is particularly well suited to studying stablecoin runs, since stablecoin issuers
operate a unilateral exchange rate peg and share the same vulnerabilities as uninsured bank debt.
Compared to standard banking models, the main theoretical contribution is the introduction of
an adoption game at the ex-ante stage and of heterogeneous payment preferences, which requires
allowing for heterogeneous payoffs (Sakovics and Steiner 2012). While the liability structure is
typically taken as given in a Diamond and Dybvig (1983)-type model, where the bank chooses
assets to trade off returns, liquidity provision and run risk, my theory endogenizes the liability
side by modeling adoption, where consumers trade off the benefits from stablecoins with the

return differential relative to insured bank deposits and the risk of devaluation.
The baseline model has three dates and considers a stablecoin that is pegged to a single fiat

currency. At the initial date, consumers decide whether to hold stablecoins or insured bank
deposits. Thereby, consumers take into account the likelihood that stablecoins or bank deposits

4See https://www.circle.com/blog/an-update-on—-usdc-and-silicon-valley-bank.

STether was sued by New York State Attorney General Letitia James for failing to fully back each Tether at all times
and agreed to pay a fine of 18.5m US dollars in February 2021.

¢In addition to the described risks associated with the leading stablecoins USDT, USDC and BUSD, which are (fully)
backed by (mostly) traditional financial assets, the so called algorithmic stablecoins like DAI and the now defunct
UST are either crypto-backed or unbacked, which exposes them to additional vulnerabilities. They use algorithmic
stabilization mechanisms maintain the peg with a fiat currency. In the case of DAI the stablecoins are collateralized
with other crypto assets, while UST relied on an arbitrage relationship with another crypto asset called Luna. This
exposes algorithmic stablecoins to the risk that the underlying crypto assets abruptly loose value or become illiquid, as
happened to UST in May 2022, thereby compounding the inherent vulnerabilities described above.
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are the preferred means of payment in the terminal period, which matters because consumers
incur transaction costs if they are not in possession of the means of payment that is accepted by
the consumption good seller from whom they want to buy the good. At the intermediate date a
run occurs if enough coin holders demand conversion to deposits, such that the stablecoin issuer
becomes insolvent. As standard in the global games literature, coin holders receive a noisy private
signal that is correlated with the issuer’s fundamental before deciding whether or not to demand
conversion. There exists a unique monotone equilibrium of the conversion game where coin
holders optimally demand conversion at the intermediate date whenever they receive a private
signal that is below a certain threshold, suggesting an unfavorable fundamental realization. I
analyze how this signal threshold and, hence, the probability of runs depends on various factors
that play an important role in the market for stablecoins. Moreover, I take the effect on the optimal
stablecoin adoption decisions at the initial date into account.

In practice, crypto investors are very diverse, and their demand for stablecoins is influenced by
preferences, such as a love for anonymity, the convenience relative to other means of payment and
potential transaction cost advantages for specific use cases such as for remittances.” Motivated
by this diversity, I generate the demand for stablecoins by introducing a heterogeneity among
consumers in their consumption preference. Specifically, consumers face a group-specific proba-
bility of wanting to purchase the good from a seller who has a payment preference for stablecoins
instead of bank deposits. Hence, consumers in groups with a high "induced payment preference"
for stablecoins optimally adopt stablecoins at the initial date, while others keep their deposits.

Iidentify two mechanisms that can justify the regulatory community’s concern about excessive
stablecoin adoption. First, the marginal adopter does not internalize that a wider adoption of
stablecoins is associated with a destabilizing composition effect. This effect arises because new
coin holders, in contrast to early adopters who are often referred to as "crypto enthusiasts," display
less enthusiasm towards stablecoins. Therefore, the flightiness of coin holders at the interim
date increases, as does the issuer’s fragility. From a regulatory perspective, I call this the "Tether
scenario," where a wider adoption of stablecoins for new use cases raises concerns about stability.
Second, the marginal adopter does not internalize network effects, which can undermine the role of
bank deposits as a means of payment. I call this the "Facebook Libra scenario," where a key concern

for regulators is the potential for a rapid and widespread adoption that leads to disintermediation.

Regarding the determinants of fragility, I find that most factors that increase the attractiveness of
stablecoins also reduce fragility. Intuitively, factors that promote stablecoin adoption also tend to
make the marginal coin holder, who is indifferent between keeping her stablecoins and demanding
conversion at the interim date, less flighty. This is the case for an increase in the likelihood that
stablecoins are the preferred means of payment. A higher adoption, in turn, can reduce fragility
if fixed operating costs can be spread across a larger user base and if there are positive network

’Cryptocurrency exchange platforms see remittances as an area with growth potential. In 2022 the Coinbase platform
began offering crypto remittances to Mexico. The new service allows to instantly send crypto assets and stablecoins,
promising 25 — 50% lower transaction costs when compared to traditional cross-border transactions.



effects that promote the use of stablecoins as a means of payment. However, in the absence of
such factors, higher adoption increases the likelihood of runs due to the destabilizing composition
effect described above. Also factors that increase the issuer’s revenue from fees and seigniorage
promote stability, as do congestion effects that are associated with an increase in transaction costs
during times of stress; a widespread phenomenon in crypto networks using decentralized ledger
technologies.® Perhaps surprisingly, the stabilizing effect of endogenous transaction costs leads to
a lower probability of runs, even when the costs are lower than the exogenous transaction costs in

the baseline model for a wide range of aggregate conversion demands.

I consider several extensions of the baseline model. Introducing a portfolio choice problem
for the stablecoin issuer, I find that she has an incentive to choose a risky portfolio without
commitment. Even a regulatory disclosure regime that allows the issuer to credibly commit to a
low-risk portfolio choice may be insufficient to achieve the socially optimal level of portfolio risk.
This finding can rationalize the use of capital requirements and of additional regulatory measures
that infer with the issuer’s risk choice, as to ensure the quality of the assets backing the coins and
to reduce operational and custodial risks. In another extension, I introduce a stablecoin lending
market. Crypto lending markets have become increasingly popular, and I find that stablecoin
lending promotes both stability and adoption, as long as the benefits are not undermined by
speculation. In addition, the stablecoin lending rate can inform the regulatory risk assessment,

with a higher lending rate being associated with greater fragility.

There is a growing body of empirical studies on stablecoins, which I discuss below. My model
allows me to develop a set of novel testable implications that link measurable market characteristics
with market outcomes. Moreover, I discuss pathways to bring them to the data. From a policy
viewpoint, I highlight the built-in fragility of the latest innovation in the history of private money

and the determinants of fragility identified in this paper can inform the ongoing policy debate.

My paper relates to the extensive theoretical research on currency attacks (Krugman 1979; Flood
and Garber 1984; Obstfeld 1986; Morris and Shin 1998; Corsetti, Dasgupta, Morris and Shin 2004)
and bank runs (Rochet and Vives 2004; Goldstein and Pauzner 2005). In a recent paper Routledge
and Zetlin-Jones (2021) analyze a currency attack model and study the vulnerability of a currency,
or stablecoin, that is not 100% backed by a reserve currency and study how a commitment to
devalue the currency conditional on the size of a speculative attack can successfully stabilize the
exchange rate. Motivated by the fall of the Bank of Amsterdam, Bolt, Frost, Shin and Wierts (2023)
show how a negative shock to the service value of fiat money can make it more vulnerable to adverse
fundamentals and to an insufficient capitalization of the central bank. Gorton, Klee, Ross, Ross
and Vardoulakis (2022b) offer a compelling rationale why stablecoin lending can drive demand
for stablecoins, while Ahmed, Aldasoro and Duley (2023) study theoretically and empirically
the ambiguous role of transparency, and Ma, Zeng and Zhang (2023) investigate the effects of

8Due to capacity limits of the Ethereum blockchain, the fees for on-chain transactions are positively associated with
trading volumes. The run against Terra USD in May 2022 is a case in point, when the Ethereum gas price quadrupled
(see Figure A1 in the Appendix), which may have contributed to stabilizing the peg of Tether.



centralized arbitrage on the run risk and secondary market price dislocations of stablecoins, using a
global games framework. My focus differs in that I offer a closer examination of the determinants of
adoption and fragility of stablecoins with a view on the risk assessment and appropriate regulation.
In other related work, Uhlig (2022) offers a theory that generates a gradual unfolding of the LUNA
and UST crash, as well as a quantitative interpretation. Li and Mayer (2022) develop a dynamic
model of stablecoin and crypto shadow banking to characterize an instability trap where tokens are
debased in states where the issuer has a low level of reserves. Meanwhile, d’Avernas, Maurin and
Vandeweyer (2022) explore the use of smart contracts to enforce pre-determined rules that prevent
over-issuance, and Klages-Mundt and Minca (2021) study alternative stabilization mechanisms.

My paper also relates to the growing literatures on digital money, crypto assets and central
bank digital currencies (CBDC). Agur, Ari and Dell’Ariccia (2022) study the optimal design of a
CBDC with an emphasis on network effects and the convenience of different means of payment;
two aspects that also feature in my paper. Adoption also plays an important role for e-commerce
platforms such as Alibaba. Chiu and Wong (2021) study the business model of platforms, who
have the choice between accepting cash and issuing digital money, and whether to allow the digital
money they issue to circulate outside the platform. Cong, Li and Wang (2021) study how user
network externalities shape crypto asset adoption and increase the price, which in turn accelerates
adoption. Ahnert, Hoffmann and Monnet (2022) analyze the choice of using CBDC for payments
with a view on privacy. Andolfatto (2021a) and Chiu, Davoodalhosseini, Jiang and Zhu (2022)
argue that CBDC does not lead to undesirable disintermediation and can increase competition
in banking. Other papers on disintermediation and the stability of banks include Whited, Wu
and Xiao (2022), Barrdear and Kumhof (2021), Davoodalhosseini (2021), Schilling, Uhlig and
Fernandez-Villaverde (2021), Keister and Monnet (2020) and Williamson (2021).

The paper is organized as follows. The environment is described in Section 2. The model is
then solved in Section 3, followed by a policy analysis in Section 4. Section 5 discusses several
extensions and additional insights for risk assessment. Section 6 presents testable implications.

Finally, Section 7 concludes. All proofs are in the Appendix.

2 Environment

Consider a game with three dates (r = 0, 1,2) that comprises an initial stablecoin adoption (or invest-
ment) game played at time 0 and a stablecoin conversion (or withdrawal) game played at time 1,
which takes the form of a global game of regime change. The economy has a unit continuum of
risk-neutral consumers indexed by i € [0, 1], a monopolistic stablecoin issuer and three competitive
consumption good sellers indexed by A, B and C. There are two different monies: insured bank

deposits and stablecoins. Consumers derive utility from consuming at time 2.

Endowments and production. At time 0 each consumer is endowed with a bank deposit that

is worth $1. Sellers have no endowment and operate a constant returns to scale technology to



produce a divisible consumption good at time 2. The unit cost of production is normalized to $1,
so competitive sellers charge a price of $1. The quantities produced by sellers A, B and C are

denoted with ¢4, cp and cc, respectively.

Insured bank deposits and stablecoins. Consumers can transfer their dollar endowments from
time 0 to the consumption stage at time 2 by holding insured bank deposits or stablecoins. Deposits
are modeled as an "outside option" with an exogenous risk-free interest rate r” > 0 when held from
time 0 to time 2 and with a (cash-like) zero interest rate when held short-term from time 0 to 1 or
from time 1 to 2. Instead, stablecoins are pegged one-to-one to the dollar, as observed in practice.

Accepted form of payment by sellers. Seller A (Seller B) only accepts a transfer of stablecoins
(bank deposits) with the corresponding dollar value as payment, and seller C accepts both deposits
and stablecoins of equal value. Importantly, all sellers must pay production costs at the end of
time 2 by transferring government-backed bank deposits (or dollars), meaning that sellers A and

C must convert the stablecoins they receive.

Consumption preference risk. Consumers buy the good from sellers and cannot trade directly
with each other. They face idiosyncratic risk about their consumption preference (or payment type),
which is realized at time 2. With probability 0 < o; < 1 consumer i only values the goods sold by
seller A, with probability 0 < B; < 1 she only values the goods sold by seller B, and with probability
0 <1 —a;—B; <1 she only values the goods sold by seller C. The utility function of consumer i
reflects the heterogeneity in payment types:°

payment type
CiA »W.p- 0 >0 stablecoins
Mi(ci,A,Ci,B,Ci,C> =4 CiB,W.p. B,- >0 bank depOSits
cic.wp. 1—0;—B; >0 both

where c; 4, ¢;p and c;c denote consumer i’s time 2 consumption of goods sold by sellers of type
A, B and C, respectively. The preference states are drawn independently, meaning that in the
aggregate a mass o = [; o;di want to buy from seller 4, amass § = [;B;di from seller B, and a mass
1 —a —B from seller C. Time ¢t = 2 goods market clearing implies cx = [;ciadi, cg = [;c;pdi and
cc = [icicdi.

A key model ingredient is that consumers differ in how attractive they find different monies
(see, e.g., Agur, Ari and Dell’Ariccia (2022)), which generates a demand schedule for stablecoins.
Formally, it is assumed that there are G groups of consumers indexed by g € {1,...,G}, where g;
denotes the group to which consumer i belongs. Each group has a measure m,, where Zgzl mg = 1.
The payment type probabilities have a common and a group specific component, o, = o + v, and
Bs =P —Y,, where v, >V, >0,Vg € {1,...,G—1}. The group specific component captures the
consumption preference risk heterogeneity and generates a higher attractiveness of stablecoins for

°The exclusive preference for a seller simplifies the exposition and can be relaxed to a relative preference.



consumers belonging to a group with a higher g. To assure that o, B, > 0 and o, + B, € [0, 1] holds
for all groups, leta >0,B -y >0, <land o +vy; < 1.

The consumption preference risk matters because of two frictions: (a) consumption good sellers
accept different monies and (b) consumers who don’t have the money that is accepted for the
purchase of the desired goods at time 2 must first convert monies, which involves transaction
costs, as described below. The resulting induced payment preference is as a proxy for the medium of
exchange function of the two monies, and the heterogeneity generates a demand for stablecoins that
captures the varying interest of consumers in crypto applications and aspects such as anonymity,

or real-world use cases such as low-cost remittances.

Transaction costs. When converting deposits into stablecoins and vice versa, consumers incur
fixed transaction costs that are exogenously given and designed to capture transaction fees and
convenience costs. The transaction costs at times 0, 1,2 are measured in dollars and denoted with
To, T1 and T,. A key model assumption is that there is an advantage to having the "right money on
hand" at time 2, i.e., the cost of converting from one money to another at short notice is higher than
the cost of an ex-ante conversion at time 0, i.e. Ty < 1y,72. This assumption can, for instance, be
motivated by transaction processing times and the inability to time the conversion for a window

of low network activity. For simplicity, I assume that 1y = 0.1

Stablecoin issuer. The monopolistic issuer offers to convert deposits into a digital token (stable-
coin) and vice versa at a one-to-one conversion rate at times 0,1,2.1" Unlike deposits, stablecoins
pay no interest and the issuer may not always be able to redeem the coins at par as promised
due to the risk of insolvency. Formally, the funds collected by the issuer at time 0 are invested in a
risky asset that pays off 8 dollars at time 2 per dollar invested at time 0, where 8 ~ U[0,0], with
0<6 <1<86. If divested prematurely the asset pays off 0 < r <8 dollars at time 1 per dollar
invested at time 0.2 Moreover, there is a bankruptcy cost y > 0 if the value of the issuer’s assets
falls below the dollar face value of the remaining coins in circulation. In this case, the coins are
devalued in accordance with the liquidation value of the issuer. In practice, the riskiness of the
issuer’s balance sheet may stem from the quality of the assets or from potential exposures to cus-

todial, operational or technological risks (e.g. cyber risk). The fundamental 8 is meant to capture

0The results are robust as long as 1 is sufficiently small relative to future transaction costs. Sections and 5 discusses
variants of the model where part (or all) of the transaction costs are captured by the stablecoin issuer, and where 7
endogenously responds to the spikes in transaction volumes. Figure Al illustrates the elevated level of transaction fees
during a period of crypto market turmoil. Transaction fees depend on market-wide conditions, as the same blockchain
is used by many cryptocurrencies. Therefore, assuming an exogenous conversion cost is a good starting point. In
practice, issuers have no control over transaction costs for on-chain transactions and for peer-to-peer transactions
(which depend on fees on the Ethereum blockchain or of a peer-to-peer exchange). However, issuers might exert certain
influence over the fees on cryptocurrency exchange platforms (e.g. USD Coin is co-owned by the exchange Coinbase
and Binance USD is owned by the exchange Binance). These platforms also offer VISA /MasterCard payment cards
enabling cryptocurrency spending and ATM withdrawals (e.g. Coinbase offers a VISA card issued by MetaBank).

1Al top stablecoin issuers, as well as mobile money and e-money operators, use a one-to-one conversion promise,
and it would require a richer modeling environment to make it an optimal contract. The closest analogy is a fixed
exchange rate regime.

2The implicit assumption that early closure is never ex-post efficient is standard. See Rochet and Vives (2004) for a
distinction between efficient and inefficient liquidations based on a moral hazard consideration.



these risks in a reduced form. Importantly, 8 < 1 gives rise to states of the world where the value
of stablecoins falls below $1 even if there are no redemption requests at time 1. This assumption
is consistent with the current business models of the leading stablecoin issuers, which hold risky
assets (see Table A2) and are thinly capitalized.!®

Stablecoin adoption game. At time 0 consumers simultaneously decide whether to keep their
endowment of $1 in bank deposits or, alternatively, convert their deposits to stablecoins. In their
decision consumers take their expected payment type, the interest rate differential and the potential
devaluation of stablecoins into account. Given the linearity, it is sufficient to restrict attention to
a binary action game. Let ag; € {0,1} denote the action of consumer i at time 0, where ag; = 1 if
she converts all her deposits to stablecoins and ag; = 0 if she keeps all deposits till time 2. The
stablecoin adoption rate is defined as N = [ agdi € [0,1].

Stablecoin conversion game. At time 1 stablecoin holders are randomly assigned a type, with
probability 0 < x < 1 they become active holders and with probability 1 — k they are passive holders.
Active coin holders decide at time 1 whether to reallocate their funds, while passive holders are
dormant till time 2. In the baseline model there will be an upper bound on x to simplify the
analysis by ruling out the possibility of rationing at time 1, as in Chen et al. (2010).1* Following
Carlsson and van Damme (1993), there is incomplete information about the issuer’s fundamental
0. At the beginning of time 1 each active stablecoin holder receives a noisy private signal x; that is
correlated with the fundamental realization:

xi =04 0¢;. (1)

The idiosyncratic noise is independently and uniformly distributed, €; ~ U[— €, + €] with e> 0 and
6 > 0, where g; and ¢; are uncorrelated. Active and passive coin holders are equally distributed
across groups. Upon receiving their signal, active coin holders simultaneously decide whether
to demand conversion to deposits at the promised one-to-one conversion rate, knowing that the
issuer may not be able to meet all requests at par.’® Let a;; € {0,1} denote the action of consumer i
at time 1, where a;; = 1 if she is an active coin holder seeking conversion, and a;; = 0 if not.

Table Al in the Appendix summarizes the game. Recall that all coins issued during the game
are exchanged for their equivalent $ value at the end of time 2. Unlike consumers, sellers are not
atomistic, and for them the fixed transaction cost 1, to exchange coins earned at time 2 is negligible.
The key difference from a standard bank run or currency attack model is the ex-ante adoption game
that links stablecoin adoption and fragility, and the heterogeneity in stablecoin demand across

consumers captured by the group specific induced payment preference. A necessary condition

13Gection 5.5 considers an extension with ® > 1, 7/(8) > 0and 0 < r(8) < 1,V € [8,0], where the focus is purely on
liquidity concerns.

14This modeling trick has no impact on the key insights and can be supported empirically. While there is a general
consensus that transactions can be faster in the digital era, recent research identifies a large group of crypto investors
who seem unskilled, lack attention, and are unable to respond to information in a timely manner (Liu et al. 2023).

15]f the model is generalized to high levels of «, I need to assume that conversion requests are met sequentially.



for a positive demand will be that the crypto enthusiasts belonging to the groups with the highest
probability to meet seller A4 have an incentive to adopt stablecoins to economize on expected

transaction costs, despite the interest rate differential and the risk of devaluation.

3 Solving the Model

The model has two stages, the adoption game at time 0 and the conversion game at time 1. I solve
the mode backwards, starting at time 1 and taking the predetermined stablecoin adoption rate N as
given. Section 3.1 analyzes the problem of stablecoin holders at time 1, solves for the continuation
equilibrium, and characterizes the equilibrium outcome, establishing a link between adoption and
fragility. The coordination game played at time 1 is a standard global game of regime change,
except for the heterogeneity in payoffs (Sdkovics and Steiner 2012). After that, Section 3.2 presents
the problem of consumers at time 0, defines a perfect Bayesian Nash equilibrium of the two-stage
game, and discusses the beneficial role of stablecoins and the optimal stablecoin adoption decision,

as well as the interaction between the fragility at time 1 and the adoption decision at time 0.

3.1 Stablecoin Runs at Time 1

Section 3.1.1 derives conditions under which the issuer is able to meet her payment obligations.
Thereafter, Section 3.1.2 discusses how the expected payoff of an active coin holder depends on her
conversion decision, the decision of other coin holders, and the solvency of the issuer. Building
on these results, Section 3.1.3 states the time 1 decision problem and solves the conversion game.

Finally, Section 3.1.4 characterizes the equilibrium and uncovers the determinants of fragility.

3.1.1 Solvency of the Stablecoin Issuer

The stablecoin issuer is insolvent, whenever she is unable to redeem the coins at par that have been
issued at time 0, meaning that she does not have sufficient resources to convert the stablecoins to
bank deposits at the promised one-to-one conversion rate. Let A = [;a;di/ (kN) be the proportion
of active coin holders who demand conversion at time 1 conditional on the adoption rate N. Let
group s denote the marginal group of coin holders with the lowest probability, o, = o + 7, of
benefitting from holding stablecoins instead of deposits, where Section 3.2 solves for N and s.
If only consumers belonging to groups g € {s,...,G} hold coins at the beginning of time 1, then
A= [iaydi/ (xZS_gm,) € [0,1], where a;; = 0 for all passive coin holders.

Theissuer is cash-flow insolvent at time 1, i.e. unable to meet her immediate payment obligations
NxA, if r < xA. This implies that she is also unable to meet her payment obligations at time 2.
Conversely, solvency at time 2 implies that the issuer is also able to meet her payment obligations
at time 1. Instead, if r > kA and:

(r—KA)g <1—xA, ()
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the issuer can meet her immediate payment obligations, but not her time 2 payment obligations,
N(x(1—A)+1—x). When deriving the main results below, I invoke a parameter condition in
Assumption 1, which implies that r > k, meaning that there is no rationing at time 1. This

simplifying assumption eases the analysis of the conversion game without affecting the key insights.

Next, I describe the regions of fundamental realizations where the issuer is fundamentally solvent
or insolvent independent of the conversion demand by active coin holders at time 1. The region of
fundamental solvency can be derived from Inequality (2), which implies that the issuer is able to
meet all redemption requests at time 2if 6 >0, = (1 —x)r/(r—x) > 1. Following the global games
bank run literature, [ additionally invoke the mild parameter assumption that 6 > 6, meaning there
exist sufficiently favorable fundamental realizations 6 € [6),0] such that the issuer is fundamentally
solvent independent of the conversion demand. The region of fundamental insolvency is derived
by isolating 0 in (2) to define a critical threshold 6 (A) € [0,6},), such that for a given conversion

demand, the issuer is insolvent for all 8 < § (A), where:

(1—xA)r

6 (A
(4) r—xA

> 1. 3)

Based on Equation (3) there exists a lower bound 6, = 1 such that for all 6 < 6, the issuer has
insufficient resources at time 2 to meet her promise even if there are no conversion demands, i.e. if
A =0. Given that 8 < I, the issuer is fundamentally insolvent for all ® € [0,0,). The two assumptions

6 >0, and 6 < 1 are used to establish an upper and a lower dominance region in Section 3.1.3.

Importantly, the solvency of the issuer depends on the level of the aggregate conversion demand
A in the intermediate range of fundamentals, 6 € (8,,0;,). Equation (3) allows to trace out how
solvency is governed by A, as illustrated in Figure A2 in the Appendix. Notably, a higher x (a
higher r) makes it harder (easier) to assure solvency. Next, I analyze for the intermediate range of
fundamentals the payoffs of active coin holders playing the conversion game at time 1.

3.1.2 Payoffs

The risk of insolvency only affects stablecoin holders, since bank deposits are insured. When
deciding whether to demand conversion of her stablecoins to bank deposits at time 1, each active
coin holder i compares the expected utility payoff from doing so with the alternative to keep her
coins. Table 1 shows the expected utility payoffs of coin holder i of group g; associated with the two
actions. Note that the payoffs depend on the realization of 8, on the average action A of others and

on expected transaction costs weighted by the group-specific probabilities of the payment type.

Isolating the average action A in Inequality (2) allows to define a critical threshold A(6), such

11



aggregate action A<A(9) A>A9)
individual action issuer is solvent issuer is insolvent
Demand conversion, a;; = 1 1 -1 — ;T 1—71 — ;T
. ﬂe_w
Keep coins, a;; =0 1Bt —— 1 — B

Table 1: Expected ex-post utility payoffs in the stablecoin conversion game atz =1 for 6 € (6,,0y).

that for a given fundamental realization, the issuer is insolvent for all A > A(8), where:16

A(G)E](((ze;_l)r;e 0,11,¥0 € (07,6, (4)

In the intermediate region 6 € (6;,0,) payoffs depend on coin holder’s beliefs about the aggre-
gate action A and the fundamental 0. First, consider the case when the issuer is solvent, A < A(9).
The issuer is able to meet her payment obligations in full to both active coin holders demanding
conversion at time 1 and to the remaining active coin holders who keep their coins till time 2, as
well as to passive coin holders. Therefore, all coin holders demanding conversion receive 1 — 1
dollars worth of bank deposits at time 1, after accounting for the conversion cost. This allows them
to purchase 1 —7; units of the good if they have a consumption preference for seller B or C, and
1 — 11 — T2 units if they have a preference for seller 7, which occurs with probability o,. Given
that the coins are not devalued at time 2 if A < A(G ), all active coin holders who keep their coins at
time 1 receive one unit consumption good if they have a preference for seller 4 or C,and 1 —t; — 1
units if they have a preference for seller B, which occurs with probability B,,.

Next, consider the case when the issuer is insolvent, A > A(8). Now she is unable to meet her
payment obligations in full to the remaining active coin holders who keep their coins till time 2, as
well as to passive coin holders. However, all active coin holders demanding conversion at time 1
still receive the promised $1 per stablecoin and have the same utility payoff as in the previous case.
This is because the first inequality in (5) bounds x from above such that r > k. Moreover, the bound
on Kk and an additional bound on the bankruptcy cost y ensure that the utility payoffs of both the
passive coin holders and the remaining active coin holders are weakly positive, independent of A:

r-xAg _

= T v . i o
< == - _r = _ .
K<¥ 0 r<r = —— T, >0ify <0,VA>A(0),0 €[0,0] (5)
The two conditions, k <K and y > 0, are summarized in Assumption 1 below and simplify the
analysis by allowing to average over the group-specific terms when solving for the equilibrium by
applying the Belief Constraint of Sdkovics and Steiner (2012), as explained in Section 3.1.3.77

160Observe that A(8) is strictly increasing in 8 and in r for all 8 € (1,6),), as the issuer is only insolvent at time 2 for
higher levels of aggregate conversion demand at time 1. Moreover, A(8) is strictly decreasing in ¥, as a higher share of
active coin holders translates into it a higher conversion demand, thereby making it harder for the issuer to be solvent.
Finally, note that § (A) < 8, requires A < A(8},).

7The implicit assumption is that the use of stablecoins as a means of payment at time 2 is independent of the solvency
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Let A1;(A;0) = E[ui(A,a0; = 1,a1;, = 1,0)] — E[ui(A,a0; = 1,a;; = 0,8)] denote coin holder i’s

differential payoff, or benefit, from demanding conversion at time 1, instead of keeping her coins:

—CIDgi‘Cz—T] ifA SA(G)
r—xA

—q)gifz—’l?]—{-l— r_eK;W ifA>A(6),

A1i(A0) = (6)

where @, = [o; — B;]12. Note that A ; is weakly decreasing in 6. Moreover, A;; is lower for coin
holders belonging to a group with a higher probability to have a preference for seller A, which, as
will become clear below, implies a reduced flightiness.

Figure 2 illustrates how the differential utility payoff A;;(A;0) varies with A for a given 6 €
(1,8;). If the issuer is solvent, i.e. for A <A(8), then A, is (locally) invariant in the aggregate
conversion demand and negative, meaning that there is no benefit from demanding conversion.
As shown in Section 3.2, this is because consumer i belonging to group g; would otherwise
not have adopted stablecoins. Formally, A;; < 0,Vg; > s if A < A(9). Conversely, for A > A(B)
there is a global strategic complementarity in actions; a higher A strictly increases the incentives to
demand conversion. Formally, A;; increases in A and reaches its maximum value for A = 1, with
A1;(1;0) >0,V0 € (0,,6,),8; € {s,....,G} under the sufficient condition that:

\|I>IE(CDGT2+’51)(1—K). (7)

The range for permissible bankruptcy costs, y € (y,8), is non-empty provided the relative attrac-
tiveness from holding stablecoins is not implausibly high for the crypto enthusiasts in group G
and the conversion cost T; is not prohibitive. Formally, the lower bound for y in (7) assures that
even coin holders belonging to group G have a benefit from demanding conversion at time 1 if they
know that all other active coin holders demand conversion, i.e. A = 1, and that the fundamental
realization is below 0;,. Taken together, the benefit from demanding conversion, A ;, depicted in

Figure 2 is negative (positive) for small (large) values of A.

3.1.3 Equilibrium of the Stablecoin Conversion Game at Time 1

This section analyzes the decision problem of active coin holders at time 1 and derives the contin-
uation equilibrium of the incomplete information game where ¢ > 0, meaning that coin holders
receive a noisy private signal at time 1 that is correlated with the amount of resources available
to the issuer at time 2. Recall that the marginal group s € {1,...,G} is defined as the group of
stablecoin adopters who find holding stablecoins least attractive, and that the number of groups

of the issuer. This assumption could, for instance, be rationalized because a new issuer enters the market or by the
ability of the insolvent issuer to continue operating under resolution with a full backing by cash. The main insights of
the paper do not hinge on this assumption and are robust to a relaxation of the upper bound on %, which simplifies the
payoff matrix and analysis of the run game as in Rochet and Vives (2004). Importantly, the analysis of the case with
more than two different groups of coin holders is facilitated by the fact that the group-specific terms are not contingent
on A (Sdkovics and Steiner 2012). See Goldstein and Pauzner (2005) for a bank run model with payoffs that do not satisfy
global strategic complementarities, as it is the case in the alternative version of my model with x = 1.
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Figure 2: Differential utility payoff of a coin holder belonging to group g; from demanding con-
version at time 1 instead of keeping her coins for a given fundamental 8 and aggregate conversion
demand A. If the issuer is insolvent, A > A(G ), a higher A strictly increases the benefit from de-
manding conversion. Note that —®,, 1, — T + Wy /((1 —r)0 /(0 —r)) is positive for all g € {s,...,G}
under the sufficient condition that the conversion cost is small relative to the bankruptcy cost.

of coin holders can be arbitrarily large. Building on the results from Section 3.1.2, Assumption 1
summarizes the key parameter conditions.

Assumption 1. Let® <1—-06¢,6,+0 <8,k <Kand y € (y.0).

As common in the global games literature, I consider the case of vanishing private signal noise,
i.e. 0\, 0, which also ensures that the first two inequalities in Assumption 1 always hold. The
upper bound on x simplifies the payoff structure and ensures global strategic complementarity
in actions (this assumption could be relaxed). The lower bound on y focuses attention on the
plausible case where even crypto enthusiasts have a benefit from demanding conversion if they
know that everybody else wants to convert and 6 < 6,,'® while the upper bound on y avoids

negative payoffs (this assumption could be relaxed).

Expected benefit from conversion. Using Equation (6), I define the differential expected payoff
of coin holder i from demanding conversion, i.e. a;; = 1, conditional on her private signal x;:

E[Ai(A;0)|xi] = Prob{A<A(0)|x}((B—a—2y)%—1) (8)

. 9 r—KAe —y
+Prob{A > A(G)\xi}/ I+(B—o—27)t0—T1 — ﬁ h(6|x;)ds,
o _

8Intuitively, the condition assures for the intermediate region the co-existence of a pure strategy Nash equilibrium
where all coin holders demand conversion in the complete information benchmark with ¢ = 0, as stated in Proposition
11 in Appendix Section A.3.
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where /(8 |x;) denotes the posterior probability of a fundamental realization of 6, after observing
the signal x;. While coin holders potentially face heterogenous type-specific payoff functions, they
all share an identical differential expected payoff conditional on their group and private signal.

I use the global games approach (Vives 2005; Morris and Shin 2006) to analyze the conversion

game and to obtain conditions for the existence of a monotone Bayesian equilibrium. The posterior
belief about the probability that the realization of 6 exceeds the level y € [ + 6 €,0 — & €] is:

1 ifxi>y+0e
Prob{® > ylx;} = Prob{x;—c&; > ylxi} = { 1+ ifx;€[y—0 €ey+0 € )
0 ifxi<y—oOe€.

Based on Equation (9), Appendix Section A.4 establishes an upper and lower dominance region
of very favorable and very unfavorable private signal realizations, respectively, such that the actions
of coin holders observing a signal that falls in these regions do not depend on the decisions of
others. Specifically, given Assumption 1 there exist two bounds x and X that define the dominance
regions [0 — o ¢,x) and (X,0 +© €.

Continuation equilibrium. Suppose that x; ; <xg,Vg € {s,...,G — 1}, meaning that coin holders
belonging to a group with a higher relative benefit from stablecoins are less inclined to demand
conversion. For adoption by at least one and up to G — (s — 1) groups, the critical mass condition is:
1% . x,—6"
vaGe ’ 1}} + Z“g:S—&-l’ng max{O,mm{% + 32(76 ’ 1}}
N

pym, max{0, min{ + (0*—1)r

“x@ )

=A(0% X}, ..., x5) ,(10)
where |, € (0,1] accounts for the fact that the coin holders belonging to group s, who have the
lowest relative benefit from holding stablecoins, may be indifferent between adopting stablecoins

or holding bank deposits, as discussed in Section 3.2.

There are G — (s — 1) indifference conditions, one equation for stablecoin holders in each group,
that depend on the fundamental threshold 6* and the group-specific signal thresholds xj, ..., x:

E[A1(A;07)|x;—,] = 0,Vges,...G} (11)

For the general case with multiple groups of coin holders, i.e. s < G, the existence of unique
equilibrium threshold strategies can be established by adapting the translation argument of Frankel
etal. (2003), which has also been used by Garcia and Panetti (2022) to study a Diamond-Dybvig bank
run model with wealth heterogeneity across households. Thereafter, I characterize a monotone
equilibrium of the continuation game by application of the Belief Constraint of Sdkovics and Steiner
(2012). The existence of the upper and lower dominance regions assures that® € (x;; —6 €,x; + G ¢)
holds. Moreover, for 6 “\, 0 the critical type-specific private signal thresholds fall within a cluster
of size 20 € together with the equilibrium fundamental threshold 8*. This cluster collapses to a
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point for vanishing private signal noise. As a result, the equilibrium is fully determined by the

G — (s—1) indifference conditions in (11), which are used to back out 6*.

The Belief Constraint states that the Laplacian Property holds on average across the different
groups of consumers adopting stablecoins, meaning that coin holders” posterior distribution of
A is on average uniform over [0,1]. This property allows to derive a tractable solution where the
equilibrium fundamental threshold is determined by averaging over the indifference conditions,
as in Equation (12) below.'® Importantly, 6* is a function of ¥, which is the weighted average of the
group-specific y,, terms, a summary statistic for the average payment preference for stablecoins in
the population of coin holders, which is governed by N. Proposition 1 describes the equilibrium
of the conversion game at time 1 for a given adoption rate.

Proposition 1. (Continuation equilibrium under incomplete information) Given Assumption 1,
6 \, 0, a positive level of adoption N > 0 and a marginal group of adopters s € {1,...,G}, there exists
a unique monotone equilibrium of the conversion game characterized by threshold strategies where active
stablecoin holders in groups g € {s,..,G} demand conversion if and only if they receive a private signal that
is below their group-specific signal threshold, i.e. for x; < xg,, and where the issuer faces a run at time 1 for
all ® < 0*, with8* € (1,6,) given by:

0*—1)r —
k(6% —r) I-x

r—xAgs _
(O5N) = B-a-2Mn-n+ , (“LAW)”’A:O’ (12

G
uxmev+Zg:s+ 1MgYg
My +Ef:x+ 1Mg

withy = , where s solves N = ugms +X9__ | my, with p, € (0,1].

g=s+

Proof. See Appendix Section A.5.1.

3.1.4 Characterization of the Equilibrium Outcome at Time 1

Next, I use the implicit function theorem to characterize the equilibrium described in Equation
(12) and to uncover the determinants of fragility. The results are summarized in Proposition 2.

Proposition 2. (Comparative statics) Given Assumption 1, €\, 0 and a positive level of adoption N > 0
with s € {1,...,G}, the probability of stablecoin runs, Prob{6 < 6*}, depends on the model parameters as

shown in Table 2.
Proof. See Appendix Section A.5.2.

The first three comparative static results in Proposition 2 are consistent with findings in the
banking literature and give confidence that the proposed model for stablecoins is sensible. Intu-

itively, an increase in bankruptcy costs and a decrease in the liquidation value r make the issuer

19Critically, the application of the Belief Constraint requires that the group-specific terms in the indifference condition
are not a function of the aggregate action. This is because the Laplacian property does not hold for the threshold type of
a group, but it only holds when averaging over groups. However, the main results can be generalized in a less tractable
model with ¥ = 1 and two groups of coin holders, leading to a dependence of o, and B, on A, and when transaction
costs are proportional to the amounts converted.
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Increase in Probability of a run
Bankruptcy cost, y
Fraction of active coin holders, k¥
Liquidation value, r
Conversion cost, T;
Average relative preference
for stablecoin payments, ¥

DR P P

Table 2: Comparative statics

less resilient. Consequently, the issuer faces a higher probability of runs. Similarly, a higher share
of active coin holders is destabilizing.

The fourth result states that higher conversion costs have a stabilizing effect. This is because
they reduce the incentives to demand conversion. Due to the importance of congestion effects in
crypto markets, the stabilizing role of transaction costs appears to be a relevant feature, as a large
volume of transactions in a short time window can trigger significant increases in transaction fees.
To speak to this phenomenon, I endogenize the conversion cost 1; in Section 5.3 and show that its
stabilizing effect is strengthened.

Destabilizing composition effect. The last comparative static result in Proposition 2 highlights
an important composition effect. 1 find that the probability of stablecoin runs decreases with ¥, a
measure that captures the average payment type and is positively associated with the probability
of a consumption preference for seller /4, who only accepts payment in stablecoins. Intuitively,
coin holders will be less flighty at time 1, if a higher proportion of them are enthusiastic about
adoption at time 0. This finding has important implications for the adoption decision, which I

discuss next. Corollary 1 summarizes the result formally.

Corollary 1. (Adoption & fragility) Under the conditions of Proposition 2, the probability of stablecoin
runs increases with the adoption rate if higher adoption affects the composition of coin holders, i.e. d0*/dN >
0if dy/dN < 0, which holds for N > mg.

Corollary 1 highlights an interesting relationship between adoption and stability. When sta-
blecoins attract more consumers from groups with lower levels of vy, then the resulting change
in the composition of coin holders is destabilizing. Intuitively, the penetration of wider market
segments beyond the crypto enthusiast has implications for the flightiness of the marginal coin
holder, thereby affecting the probability of runs. Empirically, the destabilizing composition effect
suggest to be most relevant when stablecoins are adopted for new use cases, which may imply a
substantial change in the type of the marginal coin holder. Through the lens of the model, such
an effect can be captured as a significant drop in ¥ when additional groups of consumers start
adopting. I will revisit this result in Section 4, where I discuss how adoption and fragility are
affected by changes in the environment, such as the introduction of a network externality.
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3.2 Stablecoin Adoption Game at time 0

The expected differential payoff of consumer i at time 0 from adopting stablecoins instead of bank
deposits if she expects an adoption rate N and believes that all active coin holders behave optimally
at time 1, that is:

1 iinSX*,
ari(x;N) = & (13)
0 ifx,->xz,‘_,
where x;, = 6*(N) solves Equation (12), is given by:
o* =KQ —y de J de
Aiz/ K(l-11—ot)+(1—-x)| =—F—Bi1 _——l—/ 1—Bity)= —(14+rg—0o472).(14
0i= ) <( 1—0iT) + )< T 52>>9_g X 132)9_Q (1+rg — 0472). (14)

Equation (14) builds on the utility payoffs from Table 1 and the results from Proposition 1. Note
that the risk of insolvency only affects stablecoins, as bank deposits are insured. Moreover, for
vanishing private signal noise, there is zero probability mass on fundamental realizations that
correspond to a partial run, meaning that A =1 for 6 <6* and A =0 for 8 > 6*. Based on the
description of the problems of consumers at time 0 and of coin holders at time 1, we can now
define a Perfect Bayesian Nash Equilibrium.

Definition 1. A pure strategy Perfect Bayesian Nash Equilibrium consists of a set of adoption decisions
{ag ;31 € [0,1]}, an adoption rate N*, and a set of conversion decisions {a} ;(x;;N)si € [0,1]} such that:

1. Each consumer’s adoption decision ag ; is optimal at time 0, given N*:

A()J(N*) > 0 ifaai =1
Ao’i(N*) <0 ifaai =0.

2. N*= [agdi.
3. Active coin holders act optimally at time 1, as per Equation (13), where ©* (N*) solves Equation (12).

Condition (1.) and (3.) require that adoption and conversion choices are sequentially rational
at time 0 and time 1, as prescribed in Equation (13), given the beliefs. Condition (2.) requires
consumer to follow equilibrium strategies. I proceed by first discussing the beneficial role of
stablecoins in Section 3.2.1 to highlight the advantage of having the "right money on hand" at time
2 for versions of the model where stablecoins are arbitrarily safe. Thereafter, Section 3.2.2 derives
the optimal stablecoin adoption decision for the general model and studies the interaction between
the fragility and the optimal adoption decision.
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3.2.1 Transaction Costs and the Beneficial Role of Stablecoins

The uncertain payment type combined with transaction costs makes the consumer problem at
time 0 non-trivial. To see this, I first consider the limiting case 1, \, 7o = 0, where the advantage
from having the "right money on hand" at time 2 vanishes and holding deposits is the dominant
strategy. Second, I consider the limiting case r,8 " 1, where the liquidation cost vanishes and
stablecoins are safe, to illustrate how positive transaction costs create a trade-off for consumers
when they decide whether or not to adopt stablecoins. In the first case with 1, \, 0, it is optimal
for consumers in the adoption game to keep their bank deposits, i.e. aj; = 0. To see this, observe
that the expected payoff from holding deposits, 1+ r? — a;T, ~ 1 + 1P, exceeds the expected return
of stablecoins, which is (weakly) smaller than one due to the risk of insolvency.

The second case with 7,8 1 considers the limiting case where stablecoins are safe. Given a
positive transaction cost, T, > 0, some consumers may now find it optimal to adopt stablecoins
to benefit from transaction cost advantages, especially when stablecoin payments are likely to be
accepted at time 2 and when the risk of a devaluation of the stablecoins is low. The benchmark
with safe stablecoins serves to illustrate this point. Intuitively, the limit 6 1 ensures that the
issuer will be able to exchange coins at time 2 at a rate that is arbitrarily close to the one-to-one
conversion promise, as long as there are no redemption requests at time 1. Moreover, the limit
r /8 =~ 1 ensures that the issuer can do so even if there are redemption requests, because her
liquidation cost is arbitrarily small. Formally, 8" = 6 and the probability of a stablecoins run is
zero. This benchmark best captures an "ideal world" where stablecoins are tightly regulated and
backed by central bank reserves, while offering a technology-enabled access to certain use cases or
benefits for consumers that are otherwise unavailable.?

Proposition 3 summarizes the solution to the game. As before, s € {1,..,G} is defined as the

marginal group of adopters who have the lowest benefit from adoption.

Proposition 3. (Safe stablecoins) Let r — 0, 8 — 1 and ©, /1t > B —o. Each consumer i optimally

chooses:
1 if P < [O(,,' — Bi]’tz
06,5 =43 c {0, 1} if P = [OC,' — Bi]TZ (15)
0 if r? > [o; —PBilta

at time 0, and active coin holders optimally keep their stablecoins at time 1, aj; = 0,Vi. A necessary and
sufficient condition for a positive demand for stablecoins at time 0 is given by rP /1, < oG — Bg, and there
exists a unique marginal group of stablecoin adopters s* = s € {1,..,G}. If o, —Bs > r? /12 > o451 — Bs_1, the
equilibrium stablecoin adoption rate is uniquely determined as N* = Zgzs*mg. Instead, if r” /1, = os — By,
then N* € [ES_ . ymg, TS|

2In addition, the benchmark will serve as a basis for discussing in Section 5 regulated e-money providers, narrow
banks and a hybrid CBDC through the lens of the model.

Mg].
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Proof. See Appendix Section A.5.3.

Proposition 3 states that a positive adoption rate requires that there are at least some crypto
enthusiasts, e.g. consumers belonging to group G, who have a sufficiently high probability of
having a preference for seller A such that they find it attractive to adopt stablecoins despite the
lower interest rate. Moreover, the marginal group of adopters s* is unique and there also exists
a unique solution to the adoption game if no group of consumers is exactly indifferent between
adopting stablecoins and holding bank deposits.

In a richer model, consumers may also enjoy a benefit from holding stablecoins /bank deposits,
which is potentially influenced by network effects (Section 4.1.2), or interest income from stable-
coin lending (Section 5). Therefore, the beneficial role of stablecoins extends beyond reducing
transaction costs. Moving away from the special case with safe stablecoins, I will next focus on the

practically more relevant version of the model, where the issuer is susceptible to runs.

3.2.2 Equilibrium in the Adoption Game and the Role of Beliefs about Fragility

Observe that the differential expected utility payoff from adopting stablecoins in Equation (14) is
strictly decreasing in 8* and strictly increasing y,,. Hence, under the conditions of Proposition 2,
there exists at most one value ¥ € [y;, Y] such that all consumers with y, > ¥ adopt stablecoins, while
all consumers belonging to groups with y, < ¥ favor insured bank deposits. Lemma 1 summarizes

the key insights.

Lemma 1. (Fragility & adoption) Under the conditions of Proposition 2 and given a belief about the
probability of stablecoin runs, i.e. about 0%, the adoption rate N solving the stablecoin adoption game is
weakly decreasing in ©* and the weighted average of the group-specific y is weakly increasing in 6.

In conjunction with Corollary 1, Lemma 1 establishes the interplay between stablecoin adoption
and fragility. Lemma 1 states that a less favorable believe about the probability of runs, i.e. a higher
level of 6%, is associated with a lower adoption rate, i.e. a lower N, and with a composition effect
that lowers the weighted average of the group-specific . Conversely, Corollary 1 states that a
lower adoption rate is associated with a lower probability of runs. In equilibrium the belief about
0" in the adoption game at time 0 and the solution N* have to be consistent with the 6* solving the

conversion game at time 1 and the implied 7.

It remains to analyze the existence of an equilibrium with adoption. To ease the analysis, I
assume that there exists a (virtual) group v of consumers withy, = ¥ and m, > 0 thatis just indifferent
between adopting stablecoins or deposits, meaning that A;o(6*) = 0 for g; = v. Consequently, ¥
denotes the smallest possible level of the payment type parameter governing among the group of
coin holders and vy, <v;. Next, I analyze necessary and sufficient conditions for the existence of an
interior solution where all consumers belonging to groups g € {s,G} with s > 1 adopt stablecoins,
while all others keep their funds in deposits, i.e. Y6 > 7 > V1.
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Suppose that s = G and N = mg. From the differential payoff in Equation (14) the corresponding
choices, ap; = 1 if g; = G and ap; = 0 if g; < G, are optimal for consumers if Ag;(8*(¥),Ys) > 0 where
8" solves (12) for s = G and ¥ = yg, while Ag;(8*(Y),Y6-1) < 0. Instead, if Ag;(0*(Y);Y6-1) >0
where 6* solves Equation (12) for s = G— 1 and some ¥ € [(mg_1Y6—1 +maYs)/ (mc—1 +mg),Ys|),
then I follow an iterative process to determine s < G — 1. Given that the equilibrium fundamental
threshold 8" solving the conversion game is continuous in ¥ and monotonically decreasing when
groups of stablecoin adopters with a lower Y, are added (Proposition 2), an interior solution to
the adoption game with s € {1,G} and N* € (0,1) exists if two conditions are met jointly: (1)
Noi(0%(Y6),Ys) > 0 where 6* solves (12) for s = G and (2) Ag;(0*(Y),71) < 0 where 6* solves
(12) for s = 1 and ¥ is evaluated at N = 1. This is because no consumer adopts stablecoins if
the first condition is violated and all consumers adopt stablecoins if the second condition is
violated. For 6 > 6 the lower bound for the weak preference from adopting stablecoins is given
by y= (" + (B —)12)/(212). This verifies that for all coin holders there is indeed no benefit from
demanding conversion at time 1 if the stablecoin issuer is known to be solvent, i.e. y; >y, which
is a result that is also used in the analysis of Section 3.1.2. The described solution to the adoption

game is unique. Proposition 4 summarizes.

Proposition 4. (Equilibrium of the adoption game) Suppose active stablecoin holders follow threshold
strategies in the time 1 conversion game. Under the conditions of Proposition 2, there exists a unique
solution to the stablecoin adoption game at time 0. The equilibrium is characterized by N* = 0 if Ao;(8* (Y =
Y6),Ye) < 0and by N* = 1if Ag;(6*(Y(N = 1)),v1) > 0. Moreover, if both conditions are violated, there
exists a unique equilibrivm with N* € (L, ymg, £,
g > s with g > 7 optimally adopt stablecoins and all consumers belonging to groups g < s with y, < ¥ do

\Mg +my|, where all consumers belonging to groups

not adopt stablecoins, while consumers belonging to group s are indifferent if y; = 7.

Having established the existence of a unique equilibrium of the two-stage game, I proceed with
the policy analysis, first for the baseline model and then for versions of the model that include
additional features of the stablecoins market.

4 Policy Analysis

Section 4.1 addresses regulatory concerns regarding a widespread, rapid, and from a social welfare
perspective "excessive" adoption of stablecoins. Specifically, I conduct an efficiency analysis that
focuses on differences in the privately and socially optimal levels of adoption. Thereafter, Section
4.2 speaks to regulatory concerns about moral hazard and the disclosure of risks in a version of

the model where the issuer can select the portfolio risk.

4.1 Efficiency Analysis: Excessive Adoption

I identify two mechanism that can lead to excessive stablecoin adoption through the lens of the

model. Section 4.1.1 discusses the implications of an uninternalized destabilizing composition
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effect and Section 4.1.2 discusses the implications of an uninternalized erosion of the value of bank

deposits for a version of the model with an adoption externality.

4.1.1 Uninternalized Destabilizing Composition Effect

The uninternalized destabilizing composition effect builds on the link between adoption and
fragility established in Corollary 1. Formally, let N* denote the market equilibrium and N5? the
solution of a constrained planner, who takes the one-to-one conversion promise as given and can
only choose the adoption rate. Adoption is classifed as "excessive" if N* > NF. Proposition 5

summarizes the first efficiency result.

Proposition 5. (Excessive adoption: uninternalized destabilizing composition effect) Under the
conditions of Proposition 2, the equilibrium level of adoption is excessive relative to the constrained efficient
level of adoption, N* > N5F, whenever the destabilizing composition effect is present. Otherwise, N* = N5F.

Proof. See Appendix Section A.5.4.

Intuitively, an inefficiently high level of stablecoin adoption can arise, because the marginal
adopter of stablecoins at time 0 does not take into account that she poses a negative externality
on other coin holders by increasing the probability of a stablecoin run due to the destabilizing
composition effect, i.e. dProb{6 < 6*}/dN > 0. Since the distribution of groups is discrete, it takes
more than one group of adopters for the destabilizing composition effect of Corollary 1 to arise.

From a regulatory perspective, the "Tether scenario” is best captured by excessive adoption
resulting from the destabilizing composition effect. If Tether is widely adopted for new use cases,
and this significantly changes the incentives of the marginal coin holder, then there is a concern
that this will lead to a noticeable shift in the average flightiness of coin holders, fueled by excessive
adoption. An example could be the wider adoption of Tether for remittances, which leads to large
volumes of parked funds that may be converted more quickly after negative information about
the issuer, compared to the funds held by retail crypto enthusiasts (or early adopters) who use

stablecoins as a vehicle to reduce the cost of trading in the crypto universe.

4.1.2 Uninternalized Erosion of Bank Deposits

Facebook’s announcement in June 2019 to launch its own digital currency was a wake-up call for
central banks and financial regulators. As discussed in the introduction, a key concern for policy
makers in the "Facebook Libra scenario" is that stablecoins are adopted very rapidly, with important
implications for the payments landscape and for banks, which could suffer a significant loss of
stable retail deposit funding and a reduction in the attractiveness and service value of deposits.

Building on Section 4.1.1 I study the effect of an uninternalized erosion of the value of deposits
in a version of the model with an externality that originates from a dependency of the common

components of the probabilities o and B to have a consumption preference for sellers A and B
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from the adoption rate N. Formally, I assume that o/(N),B’(1 —N) > 0, which can be interpreted
as an increase (decrease) in the desire of consumers to consume the goods from seller A (B) when
the economy-wide adoption of stablecoins is higher. This could, for instance, be rationalized by
more consumption goods (such as internet services) shifting to sellers who accept, or even prefer,
payment in stablecoins, when the economy-wide adoption of stablecoins is higher.?!

Section 5.1 discusses how the analysis of the equilibrium of the two-stage game is altered with
the introduction of the adoption externality. Proposition 6 summarizes the efficiency result.

Proposition 6. (Excessive adoption: uninternalized erosion of deposits) Under the conditions of
Proposition 2, let B’ = 0,YN € [0,1] and o(N) = xN with y, > 0 and x, \, 0, then the equilibrium level of
adoption, N*, is excessive relative to the constrained efficient level of adoption, i.e. N* > NP, whenever there
is an interior solution to the adoption game, i.e. N* € (Zg: jmg,Zg:j_lmg). Moreover, the magnitude of
the inefficiency increases if the adoption externality is introduced alongside the uninternalized destabilizing
composition effect.

Proof. See Appendix Section A.5.5.

Focusing on the case with o’ > 0 and B’ = 0,VN € [0, 1] allows to determine how the emergence
of a second externality increases the magnitude of the inefficiency identified in Proposition 5 by
increasing the wedge between the market equilibrium and the constrained efficient allocation.
Notably, the proposition restricts attention the limiting case ) \, 0, which assures that Inequality
(19) holds and the solution to the adoption game is unique (Proposition 4). This facilitates a clear
comparison between the market allocation and the solution to the constrained planner problem.
However, the result in Proposition 6 suggests to hold more generally, as long as 3 (1 — N) is not too

sensitive to changes in the adoption rate.

It is worth reiterating that the aim of Sections 4.1.1 and 4.1.2 is not to conduct a full welfare
analysis, but to rationalize a regulatory concern by identifying two mechanisms that can give rise to
excessive stablecoin adoption. Depending on the forces at play, adoption must not be excessive. For
instance, consumers may coordinate on the efficient level of adoption if there is a strong adoption
externality operating through f3.

4.2 Disclosure and Moral Hazard

The regulatory discussion on both sides of the Atlantic (US 2021; EU 2022) emphasizes measures
to increase transparency about the asset holdings of stablecoin issuers (recall Table A2) and to
reduce the riskiness of the assets that back the stablecoins. To speak to this debate, I analyze a

model extension with a moral hazard problem to study the issuer’s incentives for risk-shifting and

2'While a micro-foundation of the network externality and a full-fledged welfare analysis are beyond the scope of this
paper, one could consider a matching process in which consumer surplus depends on the number of sellers, which, in
turn, depends on the adoption rate (see, e.g., Rochet and Tirole (2003)). What matters is that the erosion of the value of
bank deposits is not internalized.
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the role of disclosure. My starting point is the baseline model from Sections 3.1 and 3.2, to which
I add a classic risk-shifting problem at time 0 by allowing the issuer to select a parameter, which
governs the riskiness of the portfolio after collecting the funds from stablecoin adopters.

Formally, I consider the choice x € {xy,x}, where xy = 0 and x; € (0,1) are the high risk
and low risk portfolio choices, respectively. The modified fundamental distribution follows
0 c U[0(x),0(x)], with 8(x) =xR+ (1 —x)8, 8(x) =xR+ (1 —x)8 and 8 (x) =xR+ (1 —x)6. An
interesting case to consider is R = (8 + 0)/2, where the fundamental distribution under x = xy
is a mean-preserving spread of the distribution under x = x;. Moreover, I assume that the issuer
receives a payoff of #(x) = xr, + (1 — x)r if she divests prematurely at time 1, with r;, € [r,1]. Conse-

quently, the low risk choice is weakly favorable when it comes to divestments, i.e. (xz) > F(xg) =r.

Remark. (Socially optimal portfolio choice) The low risk portfolio choice x = x;, is associated with
a strictly higher social welfare than the high risk portfolio choice x = xy under the sufficient condition
that the probability of stablecoin runs is weakly smaller under the consumers’ belief that x = xr, i.e. if
0%(xz) =0%<0"(xp).

A lower probability of runs is associated with a higher welfare because of the reduction in costly
divestments at time 1. I will argue below that 6*(x;) < 6*(xy) always holds. While the low risk
portfolio choice is socially desirable, the preference of the issuer may differ. Moreover, her risk
choice may not be observable and verifiable. In Section 4.2.1 I analyze the case where the issuer
can commit to a risk choice. This allows to highlight a potential misalignment stemming from the
trade-off between the benefit of enjoying a higher upside from selecting xy in case of solvency and
the benefit of a potentially lower probability of runs from selecting x;. Thereafter, Section 4.2.2
analyzes the case without commitment, where a moral hazard problem emerges. Finally, Section

4.2.3 discusses implications for regulation and the role of disclosure.

4.2.1 The Case With Commitment

Suppose that the issuer announces her choice x € {x;,xy } before the stablecoin adoption game and
that the announcement is credible, meaning that the funds from stablecoin adopters at t = 0 are

invested in a portfolio with a riskiness governed by the previously announced x.

For the choice x = xy the analysis in Sections 3.1 and 3.2 applies. For the choice x = x; the
conversion game is altered as follows. First, the parameter conditions in Assumption 1 need to be
modified to account for the change in the upper and lower bounds of the fundamental, as well as
for the lower return when divesting prematurely. Second, the modified equilibrium condition in

Equation (12) of Proposition 1 reads:

1
B — ot — 2¥(x, N)]ts — 11 + ﬁewm - dA =0, (16)
K(0F—F(x))
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where ¥ depends on the announced x, as well as the N determined in the adoption game at time 0.
Recall from Proposition 2 that d0* /dr < 0. Provided #(x.) > r, this direct effect is associated with
a lower fundamental threshold 6* solving Equation (16) under x; instead of xy. As a result, the
choice of x;, is stabilizing for a given N and ¥ if #(x) > r, which increases the resources available if

the issuer is insolvent at time 2.

Next, I move to the stablecoin adoption game at time 0. In addition to the stabilizing effect
established previously, there is a second effect that originates from the less dispersed fundamental
distribution under x;, i.e. 8 <0 (x;) and 8 (x;) < 6. Under which condition is this second effect
also stabilizing? First, note that the 6*(x) solving Equation (16) does not depend on the bounds
of the fundamental distribution. By taking the derivative with respect to x, it can be shown that
the ex-ante probability of the stablecoin issuer to be insolvent is strictly decreasing in x under the
sufficient condition that 8*(x;) < R, which holds if the probability of runs against the issuer is
sufficiently low — formally if Prob{6 < 0*} < 1/2.

It remains to discuss the response of N, as well as the associated change in y. Given Lemma 1,
a more favorable belief about stability, i.e. a lower 87, is associated with a weakly higher adoption
rate. The same is true if the payoff from divesting at time 1 is increased. A higher adoption rate, in
turn, has a destabilizing effect. In equilibrium, such an indirect destabilizing effect must, however,
be dominated by the direct stabilizing effects. Taken together, the overall effect of selecting x;
instead of xy is associated with a weakly lower probability of stablecoin runs under the sufficient
condition that Prob{6 < 0*} < 1/2, which can be regarded as not restrictive. After all, a too high
probability of runs would preclude adoption.

Next, I contrast the issuer’s benefit of a potentially lower probability of stablecoin runs when
selecting x; with the issuer’s benefit of enjoying a higher upside when selecting xy. The issuer’s
expected payoff is:

0% (x,N*)
n(x):/_(x) a0 +/ . €x (x> N*(x,0%) d6, (17)

where N(x,0*) denotes the adoption rate given x. Note that © > 0, VN (x,0*) > 0 since 8* <0, <6
by definition. The differential expected payoff from selecting x = x; is:

(18)

do.

8 (u) " d® o de
T(xy) —m = 0 —1)N"(x1,0" —— [ (0 -1)N" ——
()=o) = [ (0= DN (00" () 0T = L0 - DN 5T
0* NT* * §(x ) N7 * * ") *
= / (e—l)wczehL Y1) <if (0,0%(x1) N >d9—/_ -1
0*(x) G(XL) —Q(XL) 0* e(XL) —Q(XL) 6—-06 0(xz) 06-6
benefit of weakly benefit of a less dispersed fundamental cost of a lower
fewer runs if x = x;, and weakly higher adoption if x = x;, upside if x = x;,

Whether or not it is optimal for the issuer to select x;, depends on the relative strength of the three
effects in Equation (18). Intuitively, a lower sensitivity of the probability of runs and of adoption to
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a change in the riskiness of the investment portfolio are more likely to incentivize the issuer to select
xp. To make this point, I construct an existence result by showing that 7t (xz) — 7 (xz) < 0 for x;, \, 0

in case adoption is locally insensitive to change in the riskiness. Proposition 7 summarizes.

Proposition 7. (Privately and socially optimal portfolio choices under commitment) The privately
optimal portfolio choice can differ from the socially optimal portfolio choice xF = x; even if the stablecoin
issuer can commit. An example for x* = xy < x5F arises for x, \, 0 if the adoption rate is locally unaffected
by changes in x, i.e. if Y, > .

Proof. See Appendix Section A.5.6.

Intuitively, the example for x* = xy < x°F described in Proposition 7 emerges because the low
risk portfolio x; involves forgoing a part of the upside in Equation (18), without generating benefits
in terms of a higher adoption or a lower probability of runs. This is because N* = N* if y, > 7,
which implies that 8*(xz) = 6.

While the result of Proposition 7 for the limiting case x; ™\, 0 continues to hold as long as the
response of N* and 8* to changes in the portfolio risk is not too strong, it is not robust to the
introduction of fierce competition among multiple issuers. Assuming a contestable market, new
entrants can credibly announce their risk and compete by setting x. This results in an outcome
that maximizes consumer welfare. Thus, barriers to entry, such as switching costs, suggest to play
a significant role in creating a wedge between the privately and socially optimal portfolio choice.

The misalignment between the privately and socially optimal portfolio choice is also less likely
to occur if the monopolistic issuer has additional skin in the game, which could, for instance, stem
from future transaction fee income (Section 5.4), or from the affiliation of a stablecoin issuer with a
cryptocurrency exchange. In practice, USD Coin and the exchange Coinbase or Binance Coin and
the exchange Binance are two such cases. A crypto exchange experiences a significant disruption
and possibly risks bankruptcy if its affiliated stablecoin is devalued. Consequently, the stablecoin
issuance policy is likely to be more prudent. The self-reported asset breakdowns published by
issuers suggest that this conjecture can be verified; in October 2022 USD Coin and Binance Coin
claim to be exclusively backed by U.S. government guaranteed debt instruments, which stands in
stark contrasts to the more risky investments by Tether USD (see Table A2), a stablecoin that is not
owned by a crypto exchange. Corollary 2 develops the insight formally.

Corollary 2. (Skin in the game) Suppose the stablecoin issuer incurs an extra disutility, d > 0, from
bankruptcy. Then 3d > 0, such that x* = x5F for x; \, 0 ifd > d > 0.

Intuitively, the privately and socially optimal portfolio choice are less likely to differ if the issuer

has additional skin in the game, which I introduce with an additive disutility term d in (17).
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4.2.2 The Case Without Commitment

Next, I consider the case where the issuer cannot commit to a portfolio risk choice. Specifically,
I assume that the issuer’s announcement of x before the stablecoin adoption game is not credible
and the chosen riskiness of the portfolio cannot be observed or verified by consumers. It can be
shown by contradiction that the issuer optimally selects x* = xy, as the choice of x does not affect
the adoption rate and the beliefs of coin holders at time 1, who correctly belief that the issuer

selects xz. Proposition 8 summarizes.

Proposition 8. (No commitment) The privately optimal portfolio choice under no commitment is x* = xg.

4.2.3 Implications for Regulation

From a policy viewpoint, the previous results bear relevance for the ongoing discussion about
the adequate regulation of the stablecoins market. The lack of transparency by issuers about the
quality of the assets backing the stablecoins and weak disclosure standards (that largely rely on
self-reported information that cannot be verified) are high on the list of policy concerns (US 2021;
Bains et al. 2022). If the issuer is unable to commit to a portfolio risk choice, then a classical moral
hazard problem emerges with potentially large incentives to select a high risk portfolio (Proposition
8). The announcement of a portfolio risk choice by the issuer or self-reported information about
the riskiness of the portfolio are not credible. Financial regulators may help to address the moral
hazard problem by introducing an adequate regulatory disclosure regime that allows issuers to
obtain a public verification of statements about their assets that enhances credibility.

However, such a regulatory disclosure regime is unlikely to be enough. Given the potential
misalignment of the privately and socially optimal portfolio risk choice (Proposition 7), the intro-
duction of a disclosure regime can be insufficient in achieving the socially optimal level of risk even
if it allows issuers to credibly communicate. In light of the high market concentration (see Figure
1), also inadequate competitive pressures and entry barriers may hinder the implementation of the

socially optimal risk choice, as discussed earlier.

To hold undesirable risk-taking in check, effective regulatory measures must directly influence
the issuer’s portfolio decisions. This involves imposing specific requirements on reserve assets’
quality, liquidity, and diversification, as well as the management of custodial risks. In addition, the
issuer’s capitalization plays a critical role. Capital requirements not only provide a buffer against
losses but also increase the issuer’s skin in the game, which is conducive to the implementation of

the efficient level of risk (Corollary 2).

5 Additional Insights for Risk Assessment, Extensions and Robustness

In this section I discuss several extensions to the model and the robustness of the main findings.
First, Sections 5.1 and 5.2 consider two relevant aspects of the stablecoins market that can promote
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adoption and potentially also reduce the fragility of stablecoins: network effects and stablecoin
lending. Subsequently, Section 5.3 discusses the stabilizing role of congestion effects leading to
an endogenous response of conversion costs. Then Section 5.4 considers the resilience of the
issuer, introducing fixed costs and revenue from transaction fees. Thereafter, Section 5.5 discusses
e-money providers, narrow banks and a hybrid CBDC through the lens of the model. Finally,

Section 5.6 covers alternative model specifications and robustness.

5.1 Network effects, adoption and fragility

In this Section I analyze in more detail the version of the model with a network effect that takes
the form of the adoption externality introduced in Section 4.1.2, where o/(N),B’(1 —N) > 0. Im-
portantly, the adoption externality counteracts the destabilizing composition effect. Starting with
the continuation equilibrium at time 1 for a given adoption rate N, I revisit the destabilizing
decomposition effect established in Corollary 1.

Corollary 3. (Adoption & fragility revisited) The result in Corollary 1 prevails, as long as the destabi-
lizing composition effect from new adopters with a lower v, is not outweighed by positive network effects:

do* _d[B(1—N)—a(N) -2y
0 0 19
av =" dN ~ 19)
where:
<0; negative composition effect
N >0; positive network effect
dB(1-N)—a(N) =27 _ & my(y1—1)2

_ — '(N)=PB'(1=N
(Mj_lmj_l + Zg:jmg)

with j=s+ 1ifus €[0,1) and j=sif u, = 1.

Moving to the adoption game at time 0, it can be shown that the solution to the adoption game
remains unique if Inequality (19) holds for all N > 0, so that the destabilizing decomposition effect

is mitigated, but still dominates. In this case, the adoption rate increases, since:

dAg,i do
do. dN

dio,; d
N TdBdN

N* > 0’
where d6*/do. < 0 and d6*/dp > 0 follow from the Proof of Proposition 2. Therefore, network
effects promote adoption and reduce fragility by making stablecoins more attractive.

Notably, the equilibrium analysis is more complicated when Inequality (19) is violated, since
different optimal adoption decisions can be consistent with different beliefs about the issuer’s
fragility, which introduces a belief-driven feed-back between stablecoin adoption and stability that
can cause sudden shifts in the adoption rate. See Appendix Section A.8 for a discussion. Next,
Section 5.2 considers a version of the model with stablecoin lending, another relevant feature of
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the stablecoins market that can promote adoption.

5.2 Stablecoin Lending and the Role of a Large Speculator

Stablecoin lending is a recent phenomenon that has become a booming corner of the crypto market
in 2022. It is dominated by a handful of new intermediaries such as Crypto.com, BlockFi.com
and Nexo.io, who offer crypto savings accounts and crypto loans. Crypto savings accounts are
offered to retail customers, who can typically choose between overnight and term deposits of up
to 3 months duration. There is a also a futures market. Crypto borrowers may have different
motives, ranging from the need for liquidity to conduct trades in the crypto universe or to process
crypto payments, to the desire to short crypto. Importantly, stablecoin lending can be used by large
institutional traders to bet on the devaluation of a stablecoin, much like currency speculation in the
foreign exchange market. Not surprisingly, a wave of redemptions by speculators who borrowed
stablecoins suggests to have contributed to the collapse of USD Terra in May 2022.22

In this section I consider an extension with stablecoin lending, where consumers can earn
interest by lending out their stablecoins during the game, but they also face the risk that their coins
are devalued by the time they are return by the borrower. Specifically, I introduce a large borrower
of stablecoins who may have a speculative motive. The borrower is unconstrained and risk-neutral.
She wants to borrow & € (0,KN) units of the stablecoin at the end of time 0 from coin holders with
the promise to return (14 r¢)d coins at time 2, where r; > 0 denotes the interest rate offered to
lenders. There are two states of the world: z = 1 and z = 2. In state z = 1 the borrower turns out
to be a speculator and in state z = 2 she does not to have a speculative motive. The probability of
state z = 1is 0 < g < 1 and the probability of state z = 2 is 1 —¢q. At time 0 the borrower’s motive is

unknown, but the probabilities of the two states are common knowledge.

In case the borrower has a speculative motive, she demands conversion at the beginning of time
1 before the fundamental is realized and before the remaining coin holders play the stablecoin
conversion game. This allows her to gain from a subsequent devaluation. She does, however, incur
a loss in case the issuer remains solvent and there is no devaluation. The associated payoffs are

typical for a currency speculator.

In case the borrower does not have a speculative motive, she keeps the coins till time 2 inde-
pendent of the fundamental realization. This behavioral assumption could be rationalized by the
inability of the borrower to learn about 6 in conjunction with an unmodeled benefit (or service
value) from holding stablecoins in-between time 0 and 2, which is generating her demand for
borrowing stablecoins at time 0 and could, for instance, be rationalized by a need for liquidity to

conduct trades or for collateral to process payments.

For simplicity, I assume that the borrower’s action is observed by all coin holders before they

2In the case of USD Terra the issuer of the stablecoin and it’s underlying crypto asset Luna, as well as the USD Terra
lending platform Anchor were intertwined. The model of stablecoin lending in this paper maps better to the leading
stablecoins, which are mostly backed by traditional financial assets and where the issuers do not run the stablecoin
lending market.
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play the conversion game. All this is taken into account by consumers when they play the stablecoin
conversion game at time 1, the lending game at the end of time 0 and the adoption game at the
beginning of time 0. A destabilizing effect of stablecoin lending arises when the borrower is a
speculator and demands conversion of the 6 coins in her possession, which forces the issuer to
divest assets. Consequently, the issuer has fewer resources available in the subsequent conversion
game. Instead, a stabilizing effect arises when the borrower is not a speculator and does not demand
conversion (while the coin holders who lent to her at time 0 may have demanded conversion at time
1). In this case the borrower provides partial insurance against runs, which makes the remaining
coin holders less flighty. The differential effect of stablecoin lending on fragility across the two
states increases in the borrower’s size, i.e. in 8, meaning that only a large speculator matters.

The game shares similarities with the currency attack model of Corsetti et al. (2004). Unlike
Corsetti et al., I abstract from signaling by a better informed speculator who can matter even if
small in size. In a recent paper, Gorton et al. (2022b) offer a rationale based on stablecoin lending
that explains why there can be a demand for stablecoins even though there is a risk of runs and no
interest paid by the issuer. Different to their paper, lenders in my model have to worry that their
coins may be devalued by the time they are returned. Thus, the borrower must compensate for a
higher probability of runs with a higher interest rate.

The three stages of the modified game with stablecoin lending are discussed in more detail in
Appendix A.6 and summarized in Table A3. The derivations are relegated to Appendix A.7, where

I also present the modified parameter assumptions. Proposition 9 summarizes formally.

Proposition 9. (Stablecoin lending and speculation) Given Assumption 2 and 6 ~\, 0, the size of the
borrower is positively (negatively) associated with the flightiness of coin holders in state z =1 (z = 2),
lim,0d8/dd > 0 and lim,_,0d05/dd < 0, provided the sensitivity of the induced payment preference,
ie. dy/dN, is not too strong. Additionally, the size of the borrower is either negatively associated with
the lending rate, lim,_0dr; /dd < 0, or positively associated with the adoption rate, limy_,odN*/dd > 0,
or both. Conversely, the probability that the borrower is a speculator is either positively associated with the
lending rate, dr; /q > 0, or negatively associated with the adoption rate, dN*/dq < 0, or both.

Proof. See Appendix Section A.5.7.

Taken together, the results in Proposition 9 indicate that the introduction of stablecoin lending
tends to promote stability and adoption if the benefits are not eroded by speculation. This is
because stablecoin lending can allow coin holders to earn a better expected return on their coins,
thereby making adoption more attractive, similar to the effect of an increase in o due to an adoption
externality (see Section 5.1). Notably the borrower’s size has a differential effect on the flightiness
of coin holders in states z = 1 and z = 2. Intuitively, the stabilizing effect in state z = 2 prevails
from an ex-ante perspective as long as there is only a small probability of the state z = 1 when the
borrower is a speculator. An increasing threat of facing a speculator erodes the stabilizing effect,

which is reflected not only in a potential reduction in the adoption rate, but also in the need to offer
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a higher interest rate r, to compensate lenders. Since lenders have to worry about the possibility
that their coins will be devalued by the time they are returned, stablecoin lending has both benefits
and costs. From the viewpoint of regulators, lending rates are informative about the risk of runs,
with higher lending rates indicating higher fragility (see also Prediction 4 in Section 6).

5.3 Congestion: Endogenous Conversion Cost

Due to the importance of congestion effects in crypto market, the stabilizing role of transaction
costs appears to be a relevant feature of crypto asset markets, where a large volume of transactions
in a short time window can trigger substantial increases in transaction fees. I document such an
event in Figure Al in the Appendix for the period around the devaluation of USD Terra in May
2022, when the transaction fees for on-chain transactions on the Ethereum network (which was the
dominant network used by USD Terra) shot up more than four-fold, which may have helped to
reduce outflows from Tether, counteracting contagion effects across stablecoins. To study the role
of an endogenous response of conversion costs to congestion, I assume in this extension that the
conversion cost at time 1 given by 1{(A) =7 + ®wA with ® > 0. Similar to Diamond-Dybvig models
with increasing nominal time 1 good prices (Skeie 2021; Schilling et al. 2021), an increase of the

conversion cost due to a higher aggregate conversion demand rations the conversion run threat.

Corollary 4 shows formally that a stronger endogenous response to congestion has a stabilizing
effect. Perhaps surprisingly, the probability of runs is lower than in the benchmark model even if
the endogenous conversion cost is lower than the exogenous conversion cost used in the benchmark

model for a wide range of aggregate conversion demands, which can reach up to A = 1/2.

Corollary 4. (Endogenous congestion cost) Under the conditions of Proposition 2, the revised equilibrium

condition for the stablecoin runs game is:

i 3 o 1 %9* —y
x(0F—r)

The probability of runs decreases when the conversion cost is more sensitive to increases in the conversion
demand, i.e. d0*/dw < 0. Moreover, the probability of runs is lower than in the benchmark model with an
exogenous conversion cost if Ty < 7T+ /2. This result holds even if T (A) < 11,VA € [0,1/2).

5.4 Resilience of the Issuer

The probability of stablecoin runs, Prob{6 < 6*}, stands in a close relationship to the profitability
and resilience of the issuer via the critical threshold A(e) from Equation (4), which describes the
strength of the issuer to stem against conversion demands at time 1. I consider two modifications
of the baseline model that are are relevant for the stablecoins market and alter the issuer profits
in Equation (17). First, a variant of the model with fixed costs of operation, and second, a variant

where the issuer can generate income from transaction fees.
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So far,  assumed that the issuer does not face costs of operation. Now, consider a fixed operating
cost § > 0 that accrues at time 0 and that is deducted from the funds collected:?

ey [0 (N“(§)—&)8 —N*(§)
1(6°,N"E) _/e*(N*;é) = a9. @1)

Observe that § lowers the issuer’s profits for a given 6* and N*. Furthermore, profits decrease in
0" and increase in N*. I show in the Proof of Proposition 10(a) that d0*/d§ > 0 and dN*/d& <0,
meaning that the reduction in profits gives rise to a destabilizing effect and to a lower adoption.
This is because of a lower resilience of the issuer who is insolvent already for a lower level of
aggregate conversion demand. The fixed cost lowers the available resources, thereby making it
harder to meet the payment obligations:

N*—¢&

A(N*0,8) PG

r<A(0),v¢ >0. (22)

Notably, for a given average level of ¥, the described effect is weakened as adoption increases, since
the fixed cost is shared by a larger user base (formally, £ is divided by N*).

Next, I consider the variant of the model with transaction fee income. In practice, part or
all of the transaction cost may stem from fees earned by other parties, such as by crypto miners
for on-chain transactions or by cryptocurrency exchanges and other intermediaries for off-chain
transactions. However, some stablecoins are affiliated with exchanges (e.g. USD Coin with
Coinbase and Binance Coin with Binance), meaning that issuers may accrue part of the fees. To
account for this institutional feature, I consider a profit sharing arrangement between the issuer
and other parties. Let f € [0,1] denotes the fraction of transaction costs that are accounted for as
fee income by the issuer. The modified issuer profits are:

5 . v
n(G*,N*;f) :/ N*e l_l__(B Y)fTZ
0*(N*:f) 0—-6

de, (23)

where B —7 is the weighted average over the group-specific probabilities to meet a consumption
good seller who only accepts bank deposit, meaning that coin holders need to convert to bank
deposits at time 2 and incur the transaction cost T,. Now, the issuer is only insolvent for a higher
aggregate conversion demand:

0—1 r

—>A(0),Vf >0. (24)

Al6.f) = (1—f11)0 —rx

The additional resources available translate into a higher critical threshold for the population
fraction of coin holders demanding conversion, i.e. dA(8,f)/df >0 provided f7, is not too large.
The extra revenue promotes the issuer’s ability to meet its payment obligations. Proposition 10(b)

shows that this results in a lower probability of stablecoin runs and the intuition is similar before.

2 A variable cost has effects that are identical to a reduction in transaction fee income, which is discussed in below.
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Proposition 10. (Fixed costs of operation and transaction fee income) Under the conditions of
Proposition 2, the probability of a stablecoin run:

(a) increases in the level of the fixed cost: d®*/d& >0

(b) decreases in the fraction of transaction fee income: d@* /df < 0, provided (f -T2) is not too large.

Proof. See Appendix Section A.5.8.

5.5 Stablecoins vs. E-money, Narrow Banking, and Hybrid CBDC

The US appears to move towards a regulation that only allows federally insured banks and non-
bank financial institutions subject to a 100% reserve requirement to issue stablecoins. Indeed,
tightly regulated stablecoins issued by insured depository institutions and by narrow banks may be
asubstitute for a USretail CBDC (Waller 2021; Andolfatto 2021b). If implemented and accompanied
by adequate safeguards for operational and technological risks, as well as a backstop by the Federal
Reserve, such a policy would make regulated stablecoins risk-less and suitable as a medium of
exchange that fulfills the no-questions-asked principle put forward by Gorton and Zhang (2021). This
approach is also compatible with a hybrid CBDC architecture that allows users to have a direct
claim on the central bank (BIS 2021). The Chinese e-CNY has a hybrid CBDC architecture. At
the same time, China took a more traditional narrow banking approach with payment platforms
Alipay and WeChat Pay after the People’s Bank of China decided in 2019 that all funds backing
their e-monies must be invested in deposits at state-owned commercial banks.

Also in Europe and in other parts of the world policy markers are determined to step up
the regulation of stablecoins, as to limit exposures to liquidity risk, return risk and operational
risks. The European Markets in Crypto-Assets (MiCA) regulation proposal classifies stablecoins
that are pegged to a fiat currency as "e-money tokens" (EC 2020). After the implementation
of MiCA (scheduled for 2024), the provision of crypto-asset services in the European Union (EU)
requires companies to obtain a license and to adhere to requirements regarding their capitalization,

governance, asset separation, safekeeping of funds and more.

Through the lens of the model, tightly regulated stablecoin issuers can be captured by changing
the return profile of the fundamental 6 and the cost from divesting assets. Requiring stablecoin
issuers to invest only in the safest assets (e.g., short-term Treasuries) and introducing capital
requirements to withstand potential losses from operational or cyber risk can ensure that 8 > 1.
Thereby, regulators can rule out states of the world where the value of stablecoins falls below $1
even if there are no redemption requests at time 1. What remains are liquidity concerns arising
from high redemption volumes at time 1 if there is a cost from divesting assets, which can lead
to panic based runs. In my model this can be captured by assuming that there is incomplete
information about r. More formally, let #/(8) >0and 0 < #(8) < 1,V0 € [8,08]. Applying the same

global games methodology, it can be shown that main insights from Section 3.1 go through.

How can a policy maker rule out fragility due to panic runs that are purely based on liquidity
concerns? One option is to give stablecoin issuers access to the central bank balance sheet. Central
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bank liquidity assistance can ensure that » > 1 holds in all states of the world, even in case of large
redemption volumes at time 1. Another option is to require issuers to hold central bank reserves
and to operate like a narrow bank. A remaining concern is the low profitability of stablecoin issuers
in an low interest rate environment, which may require an additional capital buffer or subsidies to

ensure the solvency and viability of issuers.

5.6 Alternative Model Specifications and Robustness

Throughout the paper, I assume that a devaluation of stablecoins does not affect their use as a
means of payment, i.e. 0, and B, are not affected by a devaluation. This simplification is critical,
as it allows to average over the group-specific y,s by applying the Belief Constraint of Sakovics
and Steiner (2012), because the y,s are not contingent on the aggregate action. In the model
section I argue that this assumption is plausible. It can be shown that the robustness of the key
insights when considering an alternative specification where the seller’s preference for payment
in stablecoins is lower in case of a devaluation at time 1, which requires to restrict attention to the
analytically tractable case with two coin holder types.

Another important assumption is that the stablecoin issuer is a monopolist. The existence of
multiple issuers highlights the relevance of the previous discussion on fixed costs of operation
in Section 5.4, which are with multiple issuers duplicated and spread across smaller user bases.
Therefore, the smallest issuers may be the most vulnerable. Instead, the destabilizing composition
effect described in Section 3.1 gains in importance if the issuer with the highest adoption dispro-

portionately attracts flighty coin holders, which could make the dominant issuer more vulnerable.

From a regulatory perspective, it is of particular importance to focus on the weakest link if the
risk of contagion is high. The emerging empirical literature on crypto assets documents a high
degree of interconnectedness in the crypto universe. Market spillovers dwarf the variation caused
by idiosyncratic characteristics (Ferroni 2022). This is also true for the stablecoins universe, which
displays a high co-movement between different stablecoins and with other crypto assets (Gorton,
Ross and Ross 2022a). Therefore, it is insufficient to focus on the fragility of one issuer in isolation.
Moreover, institutional similarities and the interconnectedness are likely to imply that a run against
the most fragile stablecoin constitutes a wake-up call for coin holders, which makes them more

likely to demand conversion also for other coins (Ahnert and Bertsch 2022).

6 Testable Implications

The nascent empirical literature on the stablecoins market has documented that stablecoins play
a key role in the 1-2tn market for crypto assets denominated in US dollars (Hoang and Baur
2021). Moreover, there is an increasingly closer link with traditional financial markets, as well

as a high co-movement within the stablecoins universe, which raises the risk of contagious runs
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(Gorton et al. 2022a).2* Due to the large holdings of stablecoin issuers, changes in the stablecoin
market capitalization affect the US commercial paper and treasury markets (Barthelemy, Gardin
and Nguyen 2021; Kim 2022). As the stablecoin market continues to evolve, further research in this
area will be critical to ensuring stability and resilience through the design of effective regulatory

frameworks.

This section discusses implications offered by the theory developed in this paper and how they
could be tested. First, the model offers a prediction for stablecoin adoption and fragility that
emphasizes the destabilizing role of increasingly flighty stablecoin adopters (Corollary 1).

Prediction 1: The most marginal (or recent) adopters are more flighty than the average coin holder.

Prediction 1 rests on a key model assumption about the demand schedule for stablecoins.
Does the marginal stablecoin adopter become more flighty when adoption reaches broader market
segments? By how much? One way to test the validity of the assumption is to group addresses ac-
cording to whether they belong to early stablecoin adopters or to more recent adopters. Thereafter,
the groups can be associated with a flightiness measure based on the sensitivity to deviations from
the peg. Provided the most recent adopters are the most flighty and, therefore, can be classified as
the marginal coin holders, Prediction 1 follows.

Next, the model offers predictions for stablecoin adoption and fragility in relation to the role of

stablecoins as a means of payment (Section 3.1) and network effects (Section 5.1).

Prediction 2a: (1) The value of stablecoins as a means of payment and (2) the intensity of network effects
are positively associated with the stability of stablecoins.

Prediction 2b: For a given level of adoption, an increase in (1) the value of stablecoins as a means of
payment and/or in (2) the intensity of network effects reduces the flightiness of the marginal coin holder.

Predictions 2a and 2b are based on Proposition 2 and Corollary 3. They could be tested with
the help of empirical measures to gauge the strength of network effects in the stablecoins market,
including measures for platform user retention (possibly by user cohort, e.g. early adopters vs.
late adopters), for market depth, for the concentration of supply and demand, and for the cost
of switching between different coins. The value of stablecoins as a means of payment, which is
a proxy for the medium of exchange function of stablecoins, can be assessed by measuring the
scope to use them to purchase goods and services, and by measuring the transaction fees for
purchasing crypto assets. Regarding the fragility of the stablecoin issuer, a stability measure can
be constructed based on the narrowness of the bands around the peg to the U.S. dollar and the

frequency of violations of the peg, potentially taking advantage of cross-sectional variation.

Next, I turn to conditions under which stablecoins may be prone to runs that have to do with

thegimacte?sms—ofﬁaders?ﬂffthem}' i arket infrastructure.
2Gorton et al. (2022a) measure the frictions acec? %y staglsecoin oligers when transacting and converting their coins

to fiat currency, documenting a negative association with the convenience yield and a high co-movement. Grobys,
Junttila, Kolari and Sapkota (2021) show that Bitcoin volatility is an important factor driving the volatility of stablecoins.
In related work, Lyons and Viswanath-Natraj (2020) show that Tether’s peg to the US dollar is primarily stabilized by
arbitrage traders, rather than by the issuer.
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Prediction 3:  The stability of stablecoins increases if the proportion of active traders is lower.

Prediction 4: ThesStability of stablecoins increases if transaction costs are more sensitive to spikes in
conversion demand.

Prediction 3 is based on the negative effect of the proportion of active traders, k, on the stability
of the stablecoin issuer (Proposition 2). Testing this prediction requires to identify the traders
who are most sensitive to deviations from the peg, for instance by examining how many addresses
can be detected as "active" during periods when there are significant deviations from the peg.
Prediction 4 follows from Corollary 4 on the role of congestion effects. It can be tested using data
on transaction fees and volumes on the Ethereum network. Regular network updates and changes
in the market infrastructure may offer quasi-exogenous shocks to the sensitivity of conversion costs

to congestion effects in the market for stablecoins.

Finally, Prediction 5 turns to the role of the stablecoins market.

Prediction 5: For a given level of adoption, the stablecoin lending rate decreases in the share of non-

speculative use.

The prediction is based on the finding that dr;/d(1 —g) < 0 for a given level of adoption.
Moreover, Proposition 9 also suggests a negative association between the size of the stablecoin
lending market and the stablecoin lending rate, which is driven by an increase in stability. To test
the prediction, the share of speculative activity in the stablecoins lending market could be gauged
with the help of speculative DeFi positions, especially by DeFi liquidators. Notably, Prediction 5
relies on the risk of a devaluation by the time the coins are returned to lenders, and is shared with
d’Avernas et al. (2022), who also have a positive relationship between the lending rate and fragility.

7 Discussion

Stablecoins have received considerable attention from policymakers following the Facebook Libra
stablecoin announcement in June 2019, and in light of the rapid expansion of the crypto universe.
Importantly, stablecoins serve as a critical link to traditional financial markets, as documented in
recent empirical work. Because the stablecoin market is prone to instability, it may pose broader
financial stability risks going forward (FSB 2022). Therefore, it is important to understand the
determinants of stablecoin adoption and fragility, and to think about the appropriate regulation.
The theoretical framework developed in this paper aims to inform the risk assessment of the market

for stablecoins and the ongoing policy debate on how to regulate stablecoins.

The approach taken in this paper is to modify existing theories to study bank runs and cur-
rency attacks by incorporating important features of the stablecoin market. Crucially, I introduce
payment preferences that generate a demand for stablecoins and analyze how stablecoin adoption
interacts with the fragility of the stablecoin issuer. Different from a typical Diamond and Dyb-
vig-type model, where the bank chooses assets to trade off returns, liquidity provision, and run
risk, the stablecoin adoption game endogenizes the liability side. When deciding whether or not
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to adopt stablecoins, consumers trade off the benefits of stablecoins with the return differential

relative to insured bank deposits and the risk of devaluation.

I find that stablecoin adoption is likely to be excessive, because the marginal adopter does not
internalize that a wider adoption of stablecoins is associated with a destabilizing composition
effect ("Tether scenario"). Moreover, she does also not internalize the potential erosion of the
value of bank deposits as a means of payment ("Facebook Libra scenario"). This results speak
to regulatory concerns about a rapid and widespread adoption of stablecoins that is socially
undesirable. Regarding the determinants of fragility, I document that factors that increase the
issuer’s revenue from fees and seigniorage promote stability, as do congestion effects that are
associated with an increase in transaction costs during times of stress. In addition, I find that a
regulatory disclosure framework that promotes transparency can reduce risk-taking by stablecoin
issuers. However, only a heavy-handed regulation with capital requirements can guarantee the
socially efficient level of risk-taking. Finally, I find that the recent phenomenon of stablecoin

lending can promote both stability and adoption if it does not invite speculation.

Forthcoming regulation on both sides of the Atlantic, flanked by an effort to coordinate policies
internationally,? holds the promise to mitigate certain risks. While multiple G7 statements noted
that "no global stablecoin project should begin operation until it adequately addresses relevant
legal, regulatory, and oversight requirements through appropriate design and by adhering to
applicable standards",? the actual regulation remains challenging in light of the global nature of
crypto asset markets?” and the speed of innovation, especially in decentralized finance.?® Thus, it
is plausible to envision a future with a bifurcated market consisting of regulated and unregulated
stablecoins. In fact, the introduction of a CBDC can be seen as an insurance policy and its
development was motivated by the rapid growth of stablecoins (Arner, Auer and Frost 2020;
Landau and Brunnermeier 2022; FSR 2022).

®This effort is lead by the Basel Committee on Banking Supervision and the Committee on Payments and Market
Infrastructures. See, e.g., BIS (2022) and CPMI-IOSCO (2020).

2% Almost identical language was used in subsequent G7 statements in 2019, 2020 and 2021: https://www.
gouvernement .fr/en/chair-s—-statement-on-stablecoins and https://home.treasury.gov/news/
press—releases/sml152.

2The leading stablecoin Tether is domiciled in the British Virgin Islands and it’s partner bank Deltec Bank & Trust is
domiciled in the Bahamas. Similarly, many cryptocurrency exchanges are domiciled in off-shore locations with opaque
ownership structures.

28The natural starting point for financial regulators are intermediaries such as cryptocurrency exchanges and wallet
providers. Therefore, the emergence of decentralized autonomous organizations (DAOs) based on smart contracts
further complicates effective regulation, as DAOs not only obscure traditional notions of ownership, but they also rely
less on intermediaries.
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A Appendix

A.1 Additional Figures and Tables

Terra USD (UST) Price and Average Daily Gas Price (in 107-9 ETH)
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Figure Al: End of day (CEST) price in US dollars (left axis) and average daily gas price on the
Ethereum network measured in 10~ units of the cryptocurrency ETH (right axis) over the period
from May 6, 2022 to May 16, 2022. Source: coingecko.com and ycharts.com.
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Figure A2: Solvency of the stablecoin issuer as a function of the fundamental realization 8 and

the population fraction A of coin holders demanding conversion. Only in the intermediate region,
0 € (8,,6;), the solvency of the issuer depends on the level of the aggregate conversion demand A.
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Time 0

Time 1

Time 2

1. Adoption game:
Consumers simultaneously
decide whether to convert
their bank deposits to
stablecoins, ap; =1,

ornot, ap; =0

2. The stablecoin issuer
invests all funds received
from consumers who
adopt stablecoins

3. The fundamental 0 is realized
but unobserved and a fraction

K of coin holders become active
4. Stablecoin conversion game:
Active stablecoin holders receive
the private signal x; and decide
simultaneously whether to
demand conversion to deposits,
ay; =1,ornot, a;; = 0, while
passive coin holders are dormant
5. The stablecoin issuer meets
coin holders” conversion requests
by divesting assets

6. The outcome of the time 1
stablecoin conversion game and
the fundamental realization 0

are observed; the preference

of each consumer is realized

7. If the issuer’s reserves fall
short of the face value of claims
held by the remaining active

and passive coin holders, the
issuer is insolvent and the
stablecoins are devalued

8. Consumers buy goods from
their preferred seller and convert
their money (if necessary)

9. Sellers A and C convert the
stablecoins earned; all sellers pay
production costs with govern-
ment-backed deposits (or dollars)

Table A1l: Timeline of events.

A.2 Tether Asset Breakdown

Table A2 shows Tether’s self-reported asset breakdown as of June 2022 and September 2022, when
USDT was backed by a range of risky assets, including corporate bonds, secured loans, investments
in digital tokens, commercial paper and deposits in non-US regulated financial institutions. The
latest reporting from June 2023 in column 3 indicates a reduced exposure to commercial paper and
bank deposits, but more granular data is not available, and the quarterly reporting is published

with a substantial delay.

A.3 Complete Information Benchmark: ¢ =0

This Appendix section considers the benchmark with complete information where active coin
holders obtain a precise signal at t = 1, i.e. 6 = 0, about the resources available to the stablecoin
issuer at time 2.

Suppose that an individual active coin holder i believes that others keep their coins, i.e. a;,_; = 0.
Then her optimal strategy is to demand conversion if and only if the differential payoff from
conversion relative to keeping the coins is weakly positive. Weak preference for demanding
conversion holds if & < 08, = 1, which gives us a lower bound for 6 such that it is the (weakly)

dominant action to demand conversion for all 6 < 1.

Following the same logic, I can derive the upper bound from the weak preference for not
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Assets

Value in bn USD
06/30/2022 09/30/2022 06/30/2023
Commercial Paper 8,402 50
& Certificates of Deposit A-1+ rating 1,434 50
A-1 rating 5,465
A-2 rating 1,499
Cash & Bank Deposits 5,418 6,077 91
Money Market Funds 6,810 7,102 8,134
U.S. Treasury Bills 28,856 39,678 55,810
Non-U.S. Treasury Bills 397 182 63
Reverse Repurchase Agreements 2,992 3,024 9,470
Secured Loans 4,494 6,136 5,504
Corporate Bonds, Funds & Precious Metals 3,487 3,194 3,386
Other Investments & digital tokens 5,551 2,617 4,041
Total 66,410 68,061 86,499

Table A2: Tether asset breakdown at 30 June 2022, 30 September 2022 and 30 June 2023. Assurance
opinion by BDO, Italy.

demanding conversion if the active coin holder i believes that all others demand conversion, i.e. if
ay—; = 1. Given:
(B—o)—1

>p=r 72 -
’YS i} Y 212 s (25)

it is the (weakly) dominant action for all coin holders to keep their stablecoins if 6 > 6;, where
s € {1,...,G} denotes the group of coin holders with the lowest probability of being matched with
a seller who has a preference for stablecoin payments. As the analysis of the conversion game at
time 1 requires that stablecoins are adopted at least by some consumers, I now assume (and later
show) that Inequality (25) holds, which intuitively requires that the preference for bank deposits
as a means of payment 3 — Y cannot be too high.

Next, I analyze what happens in the intermediate region 6 € [1,6]. Recall that the intermediate
region is non-empty and observe that for any 6 € [1,8,], multiple belief-driven equilibria exist.
Specifically, there always exists a pure strategy Nash equilibrium where all coin holders demand
conversion and a pure strategy Nash equilibrium where all coin holders keep their stablecoins.

Proposition 11 summarizes.

Proposition 11. (Continuation equilibrium under complete information) Let c = 0. Given Assump-
tion 1 and a positive level of adoption N > 0, there exists a unique equilibrium of the conversion game where
all active stablecoin holders demand conversion if © € [0,1) and a unique equilibrium where no stablecoin
holder demands conversion if © € (0,,0]. In the intermediate range, © € [1,8}], there exist multiple pure
strategy Nash equilibria.

44



A.4 Derivation of Dominance Regions

Let v, > 7, where 7 is defined in Equation (25). I characterize the upper and lower dominance

regions.

Upper dominance region. A coin holder belonging to group g € {s,...,G} with the signal x; > X,
strictly prefers to keep her coins even when all other active coin holders demand conversion, i.e.
A =1, where X,:

r—K
Prob{0 > 0,|x; =X, } — 1+ ¥, + 11 + /60/1 %h(e lxi =X,)d® = 0. (26)
Observe that the left-hand side of Equation (26) takes on a negative value if x; < 6, —ce and
a positive value if x; > 0, +oc¢ and 1| + ¥,12 > 0, which holds provided there is adoption of
stablecoins. Moreover, the left-hand side strictly increases in x; = X,. As a result, a sufficient
condition for no conversion demand by all coin holders can be obtained by solving Equation (26)
for the marginal group s. There exists a unique X = X such that it is the dominant action for all
coin holders with a private signal x; > X to keep their coins.

Lower dominance region. Analogously, a coin holder belonging to group g € {s,....,G} who
receives the private signal x; < x, strictly prefers to demand conversion even when all other coin
holders keep their stablecoins, i.e. A =0, where X, solves:

1Ky _
Prob{® < 8/|x; = x,}(1 —T1 —0gT2) —/ (’I—KW — Bg‘cz> h(8]x; = x,)d®
o _

—  Prob{6 > 0|x; = x,} (11 + Py12) =0. (27)
Observe that the left-hand side of Equation (27) takes on a positive value if x; < 8, — o€ due to
y >y in Assumption 1. Conversely, it takes on a negative value if x; > 0, + o€ since —7; — P,1> <0.
Moreover, the left-hand side is strictly decreasing in x; = X, Asa result, a sufficient condition for
no conversion demand by all coin holders can be obtained by solving Equation (27) for group G.

There exists a unique x = x; such that it is the dominant action for all coin holders with a private
signal x; < x to demand conversion.

A.5 Proofs
A.5.1 Proof of Proposition 1

I start with preliminary results. Following Sdkovics and Steiner (2012) I rescale the aggregate
action as:

AE.T)

Z‘g:s-&-lmgF(rg - E,v) + ms“sF(rs - & ),
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where & is a scalar and I is a vector of I'ys that relates the group-specific threshold signals to
the signal threshold of a group & as follows: I', = (x; —x;)/6 and 8 = x; +c6&. Then I write the

strategic beliefs as:
Ag(AT) = Pr{A(Fg —-e, ) <A} = Pr{Zf:SHmhF(Fh —Ty+¢e)+muF (T, —T,+¢€) <A}

Define 8 (A,T') as the inverse function of A(§,T') with respect to &, where dd /dA < 0, because
dA(E.T)/dE <0 for A(E,T) € (0,1). Next, following Lemma 4 in Sdkovics and Steiner (2012) I
establish that the densities associated with the strategic belief are bounded:

dA,(A.T) F(Ty—B(A.T)) 1
O S = S .
0A 28 mef(Tg—&) +mps f(Ts—&) ~ my

Finally, I define the expected utility payoff of the threshold type as:
1
HO(x1,T) = E[A(A:0,N)|(x5g =g)] = /O Alx + 60 (A,T),A)dA,(A,T),

where I drop the adoption rate in the last line for simplicity.
Note that the beliefs are independent of 6 so that the Hy (x,I')’s are well-defined for all 6 > 0.
The proof proceeds in three steps. In Step 1 I follow the translation argument in Frankel et

al. (2003) and establish by contradiction that if there is a solution to the system of indifference
conditions given by:

Hg (x1,T') =0,Vg € {s,...,G},

then it must be unique. Thereafter, I establish equilibrium convergence in Step 2 and apply in
Step 3 the Belief Constraint of Sdkovics and Steiner (2012) to derive Equation (12) in Proposition 1.
Finally, existence can be established by iterated elimination of dominated strategies.

Step 1: Suppose there exist two distinct solutions, (x;,I') and (x},T”).

First, consider the case where I' = I" and x; # x|. Recall that A; is weakly decreasing in 8 for all
groups so that A;(x] +69(A,I"),a) < A;j(x; +00(A,T),a) if x| > x;. Moreover, A* > (A*)" if x| > x|
since A(8) is strictly increasing in 0. As a result, A;(A*,T) > A,((A*)',T). There is a contradiction:
Hg (x),T) < HY (x1,T), because A;(x] + 69 (A,T")) < Ai(x1 + 069 (A,T)) for A € ((A*)',A*) due to the
discontinuity of A; at the solvency threshold A(8) so that:

/0 ' A(A, 40 (ALT))dA((A7),T) < /0 CAi(Auxr + 60 (A,T))dA, (4%,T).

Second, consider the case where T # I and, without loss of generality, x; < x/l. Choose h €

argmaxg (I, — ') and let D = max, (T, —T;) > 0. Notice that I}, —T', > T, —T';,Vg € {s,...,G} holds
with strict inequality at least for one group g due to the assumption that I' # I'". Let £} = x| + 6D,
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then:
Hy (%,.T) < Hy (x1,T),

which, as I will show below, leads to a contradiction. Next, use the substitution a = a(T';, —¢;,I),
¥, = X1 + 0T}, and x), = x| + oI, to re-write the expected utility payoff as:

+€
H}? (f],r) = / Ah(fh —6811,d(rh —eh,l"))df(sh)dsh
—€
+€

HS (X)) :/ An(x, — e a(T, — 0, 1)) f (1) den,

—&€

where 1 used that 9(A,T) is the inverse function of A(§,T') with respect to . Observe that
%, = x} + oD+ oI, = x). Moreover, because of I';, — 1“2, >TI—T,Vgeds,...,G}:

Yomg(1—F (T, —T)4¢)) +mspts(1 = F(Ts =), 4-€;)) > Zemg (1 = F(Tg =T 4-€4)) +mpts (1 = F(Ts — T +-¢5)),

which implies: a(I', —¢€,,I") > a(I';, —€,,T), Ve,. Next, I establish strict inequality by noting that the
g solving a(T), —¢;,T) = A(%, — o (g;)) and the (g])’ solving a(T, — (g),I") = A(x, — o (g})') are
related to each other as (g;)' > € for %, = x),. Moreover, I can show that (g;/)’ > €, by contradiction.
Suppose that (¢;)" = ¢, and recall that there exists a g such that I' —T", > I', — T, Vg € {s,...., G}, for
which:

(1=F(T, =T} 4¢;)) > (1-F (T, =T +¢;)).

Asaresult,a(I',—¢;,I") > a(T',—¢;,T'), which contradicts (g, ) = €;;. Hence, HY (%,T') —HP (x},T") <
0, meaning there exists at most one equilibrium characterized by threshold strategies, which con-

cludes Step 1.

Step 2: Next, I show that the system of indifference conditions given by:
H; (x1,T) =0,vg € {s,...,G}

is well approximated by Hg (x1,T) =0,as 6 \,0. Note thatlimg\ o & =limg~ o9 (4,T) = 0. Moreover,
all group-specific signal thresholds x; must lie in the 6 /2-neighborhood of the fundamental
threshold 6*(c) for the indifference conditions to hold. Following Sakovics and Steiner (2012) I
can show that HS (x;,I') = 0 converges uniformly to H (x;,T) when 6 is small. To do so, I use the
fact that the differential payoff from demanding conversion, A, is Lipschitz continuous to the left
and right of A(8).

Step 3: Next, I apply the Belief Constraint. Using the previous results, the signal thresholds x;
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converge to the fundamental threshold 6* solving;:

0*=1D)r

/OK<°*-’> ((B—o—27,)t2 —11) dAg(A,T)

r—xA

(1 +(B -0 —2y) T — ﬁ) dAL(A.T*) = 0,Yg € {s5,....G}. (28)

1
+ /;9*—1)r
k(0% —r)

Summing over the coin holder groups on both sides, I arrive at Equation (12) using the Belief
Constraint, which crucially depends on the assumption that the y,s are not contingent on the

aggregate action of coin holders, to obtain:

0*—1 —
me*jr; 1—xA Wsrg + Zg:‘v_ng

1 r—KAe*_ Mg S_+_ZG_' m
ﬁ (1_7r W)dA—l—(B—OC)Tz—’Cl—ZTZM L %—‘SJFI ng :0,

where Zg:SngAg (A, T*) + msuA (A, T) = A.

It remains to establish the existence of a threshold equilibrium following iterated elimination of
dominated strategies as in Sdkovics and Steiner (2012). This concludes the Proof of Proposition 1.

A.5.2 Proof of Proposition 2

I establish the comparative static results summarized in Proposition 2 by analyzing Equation (12):

dl
— = 21,<0
dy
i _ Al _ o
g~ da 7
dl
= —1<0
dt
dl ! V)
-— = ———dA>0
dy ﬂe**”’ 1-xA
k(0%—r)
dl 1 KA 0*—1 0* v
— = - L _B*dA-— 1—1+-Y <o
dr [9**”’ r’(1—-xA) k (0% —r)2 T o
Ko (6 1)
di ! A 6 (8% —1)r v
de WA UEE dA+ —S—— |1-1+——=-| >0
dx [9**”’ ((IKA)2 ( r W)) +1(2((9*—r) + (6 —1)r
Ko K@ 1)
dl
- = — o
d‘Cz B
dl 1 LxAg* — rol—r \
- ——dA—————= [ 1 -1+ —F—— | <0.
do* [9**”’ 1 -kA K (0% —r)2 T 1 (—Dr
K(0%—r) K(e*—r)

By application of the implicit function theorem the results in Proposition 2 follow. This concludes

the proof.
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A.5.3 Proof of Proposition 3

The game is solved by backward induction. At time 2 consumers enter the consumption stage
either as coin holders or as bank depositors and just use the available funds to consume. At time
1, consumers also enter the period either as coin holders or as depositors. Depositors do not find
it optimal to convert their money at time 1, because they found it optimal to hold deposits initially
and would otherwise forgo the positive interest rate. Given that the issuer can always assure a
stablecoin value that is arbitrarily close to one dollar at time 2, it is the dominant strategy for
active coin holders not to demand conversion, i.e. aj; = 0,Vi. Requesting conversion at time 1 is
unattractive due to the fixed conversion cost, as long as t; > [B; — o] 2.

It remains to consider the adoption game at time 0. Given ,6 " 1, the consumer i’s problem is:

A (a0 (1—PBit2) + (1 —ag) (1+ 7 —oy12)) .

When deciding to adopt stablecoins at time 0, i.e. ap; = 1, consumer i receives coins with a
nominal value of $1. Since the coins are safe, consumer i can purchase one consumption good at
time 2 from seller A and C, but only 1 — 1, units of the consumption good from seller 8. Instead,
when deciding to keep the deposits at time 0, i.e. ap; = 0, and to hold them till time 2, consumer i
receives a (weakly) positive interest rate. Therefore, she can purchase 1+ r” goods at time 2 from
seller B and C, but only 1 + P —1, goods from seller A. This concludes the proof.

A.5.4 Proof of Proposition 5

For 6 ™\, 0 social welfare is given by:

WOSN) = (1-N)(14rg) — (z;—:llmgag +(1- us)ms(xs) 5 (29)

r—x

+Z§:S+1mg (/ee <K(1 — T — 0Ty) + (1 — k) <%—Bgrz>>de +/:(1—Bgrz)d9> ﬁ

r—x

g, (/: <K(1 =0+ (1—¥) <% _ Bm)) 46 +/:(1 _ Bs'cz)d6> ﬁ
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Suppose the adoption rate is interior, i.e. N € (ZG Mes Zg j—1Mg), then the first derivative is given

= —(I4+rg—(0+7) 1)
1

de” v
G e _ v (1
+Z, oMy <K(1 T) — 0To) + (1 K)<1 T Bg12> (1 [3[5,12))5_g
r—K

+(/ee* <K(1—T1—0€sT2)+(1_K) (%_BM))dG +/ 1—an)de> §ig

*

+usmsccll?v <1<(1 -7 — o)+ (1—x) <1 — & —Bst> (1 —BsT2)> ﬁ

Using an envelop-type argument, I evaluate the derivative at N* by plugging the indifference

condition from the adoption game (Equation (14)):

AW (87N . de v
N vew = e (K(—Tl—“gT2)+(1—K) <—1——5g12 +Bem2) | 5 e‘N N

de* v 1 ..do
Mgty <K(—‘C] —0T2) + (1 —x) <—H — BS‘C2> +[3S1:2)> ﬂ‘N:N* <0if N 0.

As a result, N* > N5" whenever the destabilizing composition effect from Corollary 1 is present,
i.e. if d0*/dN > 0, and the adoption rate is interior. This requires that consumers from more than
one group adopt stablecoins.

It remains to discuss the case when adoption rate takes on a corner solution, i.e. N* €
{Z Mg, ... Zg:G_lmg}. From Equation (29) it can be seen that the two last terms drop when
taking the derivative with respect to N for the corner solution. However, adoption is still excessive
as long as the destabilizing composition effect from Corollary 1 is present. This is the case if the

marginal adopter is just indifferent. Otherwise, N* = N5F. This concludes the proof.

A.5.5 Proof of Proposition 6

Building on the Proof of Proposition 5 and the analysis of the equilibrium in the two-stage game
of the model with a network externality in Section 5.1, I analyze the first derivate of the the

welfare function when o(N) = xN. Again, suppose that the adoption rate is interior, i.e. N €
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(ZG mg,Zg j-1Mg), then:

dW (8*;N)

O = (i @)+ 1)%) - (=N W)~ (S m) [ (Ve

1

do” v
L mg N ( k(1= =0 T) 4 (1 - k) <1—ﬁ—|3g12> —(1—|3g12)> 7.0

do
0

) (/; (K(l—‘tl—asn)—’_(l_]{) (%—Bm))de +/:(1—[3s1'2)d6> 51 5

*

+u5mf§1)v <K(1 — T — 0T2) + (1 — %) <1 - % N B‘Ytz) - (1= BSTZ)) ﬁ

Plugging in from the indifference condition gives:

dN

0
+ZG Hr]mgc;e* <K(1—’C1—ch’62>+(1—1<)< —ﬁ—ﬂg’cz) (I—Bg’Cz)>

*

dw (6%; 0
( ‘N =N* = X <( )Tz+(z‘g s+lmg+qu9)/ KT

+ Uty ——

where N* is the equilibrium level of adoption at the presence of positive network effects. The
first line captures the additional terms, which are strictly negative for y > 0 and related to the
uninternalized erosion of bank deposits as a means of payment. Observe that the derivative
equals the one in the Proof of Proposition 5 if ), ™\, 0.

Suppose that a.(N*) = o, then N* = N* and NP < N5 < N*, provided the solution is interior.
It is in this sense that the magnitude of the inefficiency increases when the second externality is
introduced. Moreover, it increases in the magnitude of the network effect, i.e. in ). This concludes
the proof of Proposition 6.

A.5.6 Proof of Proposition 7

The proof establishes an example for x* = xy < x5 that arises for x; \, 0 if the adoption rate is
locally unaffected by changes in x, which is assured if v, > ¥. To do so, I take the derivative of (18)
with respect to x; and then examine the limit when x; “\, 0. First, note that 7(0) — 7t (xy) = 0 and:

drm ()CL) — TE()CH) i d@(xL) 6 (x)
de o de

where I used that N* is locally unaffected by changes in x; by assumption. Taking the limit gives:

d . o * 0 *
lim L) =m0w) g gy gy N +/ 0—1)_ap <o0.
x,—0 dxy, 9 * 06—

51

e e ‘N N
de ) 1
N (K(l — T —as'tz) + (1 —K) (1 — m —B5T2> - (1 _BSTZ)> E‘N:N*a

O 08 0100 % - 0 DR )



As aresult, the issuer optimally selects x* = xp if x; \, 0 and the adoption rate is locally unaffected

by changes in x. This concludes the proof.

A.5.7 Proof of Proposition 9

There are seven endogenous variables to keep track of, 8], 65, N*, rj, s*, u; and ¥*. Notably, ¢, the

additional endogenous variables y; and u; are exclusively pinned down by & from Equation (34).

I first consider the case where, due to the sparse distribution of groups, the adoption rate N*

does not respond to small changes in ¢, k, & or in other model parameters. Said differently, I

assume that fg s.t. v, = *. Thereafter, I consider the case where N* responds to changes in model

parameters, i.e. 3gs.t. y, = "

Case 1: fgs.t. Y, = 7*. Since N* does not respond to small changes in model parameters, I can

conduct the comparative statics analysis for a given adoption rate N and marginal group s, using

the implicit function theorem. The derivatives of the first and second implicit function are:

dlg, (+) (1=r)r v ! o —
- — Jor_1ad (128 L dA <0
* 5 « of(i—r) _ JoieR (-7 8 8
9 (K_N) (87 —r)* o (K%)<<9M>r _N_< _17>A
dle, () dly, dly, dly: dly.
d6; . d62*() dﬂl*() drg() dq() EE

Moreover, given p, = 0:

=0

T+

*
dlg,(-) __ dV(LN.S)
dx dx

<0

’*_/h
dlo () __dY(ENS)
ds ds 2

=0
dlo() _dU(ENS)
dx dx 2
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— y
dl, (+) _ 2dy(£;N,8)Tzil 0, —1 LV
dd dd N S 2 N 05 (1-r)
(K_N) (92—1‘) 671
1 AA62 1
—/ 0% 1 ( r)+WN dA < 0if dy/dd is small

e (- ()

The derivatives of the third implicit function are:

dA(- reKgx_

20— (et k(15 gy mn ) <0

dA'(") xR g

Tl (1—61)<(K+r4){_K7J:%"’—K(1—r1—ocg,.rz)—rz <0

dA'(- w [ kg _ % r=xg_
dK() = C](f;)l(’l(ile—l—(K—i-rg) ,(1(21)2,9 "’—(1—11 ocg'cz)—i—mz )d6>

(e 8y Ry
+(1_q)< 962 (Tizﬁw_'_(](_f_rz) r(l K+£I)+5 2, 0, W—(I—Tl (xg‘cz)—l—Ktsz)dG ) <0

(1-x+%)
dA'(Y)
S q(

Jo' (Kfzdg,)dﬂ >+( )( % ((K‘F"Z)%—FK’CZ >d6 >>01fq\o
diié) = q( fy' (%Y d0 + [ )+(1—q)< o (%)deﬁ—fe*dG)

< 0,

where dy/dx = 0 and dy/dd = 0 by assumption.
Note that Iy, , Iy, and A’ are continuously differentiable. Using the implicit function theorem for

simultaneous equations, I can derive:

dly, dly, dlg1
‘ ~dvar doy d_rz '

dl, dly, ~dlo,
- dva}j do; dr;
dA"  dA'  dA!

ey “dvar  de; dr (30)
dvar |D| ’
where var is the exogenous variable of interest. The determinant is non-zero and given by:
e, dly  dlp
a7 a8, dr
_ d]ez d[e2 d162
|D| = i @ @ @t | 0. (31)
dA' dA' o aA!

ey de;  dr;
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First, I find that d6}/dq = 0,Vz = 1,2, because the flightiness of coin holders participating in
the conversion game is only affected by & and not by g. However, the remuneration of stablecoin
lenders is affected. Specifically, they need to be offered a higher compensation dr; /dq > 0 due to
the reduced stability, which reduces the attractiveness of stablecoin lending.

Second, I find that d8 /dx > 0and d®; /dx > 0, which again results in the need for a higher com-
pensation in the lending game, lim,_,o dr; /dx > 0. Moreover, lim,_,0d0; /dd >0, lim,_,0d05 /dd <0
and lim,_,odr;/dd < 0 provided dYy/d$ is small.

Notably, ¥*, and consequently also s* and N*, are derived from A°(6;,05;7,) = 0 without effect
on the qualitative results derived above, provided Jg s.t. Y, = ¥*. Or put another way, ¥, > 7*.

Case 2: dgs.t. v, =7". Next, I conduct the comparative statics analysis allowing for a change
in the adoption rate. This means that s* is defined by v, = ¥*. Hence, both variables respond to
small changes in model parameters whenever these changes are not off-set by changes in ., which
necessitates changes in N*. As a result, I can take s and 7; as given when analyzing how N* and p;
change as prescribed by A%(67,6;:¥;, 1) = 0 and N*(s, ;') = XS mg + uSmy. Thereby, I use the
previous insight that A? is independent of ¢ and of r, for £ > s.

I start by analyzing the following additional derivatives:

<0
—~
dle, (1) __dY(8) ¥r o7 (1-1) v
N RN Ty 2 ] oy |4
(c=8) 01 -n |, _s_o2(-%)
D H—
3 (1-A)
1 Mg 8 (1 _A)(0F—
_%’I‘—H% ]_grf) . I 12 V) dA <0ifdy(8)/dN* is small
T, 3 (3
GOr=RANN G A G E
<0
dI ay@) 5 0;—1
92(*) = 20 Y(*>+ :2 22 r lI(;"fl dA
N R O NG At =
! A8+ A (6] — ) A0

e\ 0 ey

Note that both derivatives are approximately zero in the limit 6 — 0. Moreover:

dA' () 6; a7(3) a28(1-1)-v

an- 4 Jy k. BRde +(1-q) J* (xn2Te +(1_K)W @® <0
dao() EO; —y

o = <K(1 ) + (1K) <ﬁ—sg,c2> (1 —Bgirz)) <0

d
dA’() e~y
= (11— 1—11— 0. 1— —r = B, — (1 -0, 0
d6; (1=¢q) | k(1 =11 —012) + (1 —x) 1—1(—1—% BeiT2 (1-Bgm2) | <
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dAqu(') = </;I* <K(1 — T — 0 T) + (1 —%) (’,‘;e_];\p Bgitz)> de —|—/e?<1 Bgl‘TZ)de)

* r—1<+% _
_ (/e (K<1ﬁocg,rz>+(11<> (I]:’iN“’ Bg,’cz>>d9 +/ IBgrz)d9> <0

LG o 0 02 (1K) 4+ 1750 -

S d 3
0; r—K+N62_W _92(1—K+N)+r—K++N92_
+(1— / -7 —0eTp——L——— +B, T+ (1 —% I 4
( ‘I) o ( 1 g: T2 1_K+% Bg,z ( ) 1_K+1§v
dA’(-) ¥ o dY av o dy
= K 1—x)— 1
75 d512+q /g ( KoST +( d8 >d6+/ T2d0
03 SE-1+¥ ay o dy dy
(1 / —K—‘C +( r + %) ) ae +/ N a0 ) >0if 2 is small
( q)(g ( ( 1_K+1§/ d5 o; dd 2 d
dA°(-) 0
dr}‘ o
dA°(-) ay h 6 dy 0; 6 dv
= 1—2%)de do 1— 1—2K)do
dN* aN- T /9 (1=20)d0+ | d8 | Nt 1=a) /e (1=2K)d6 + N

*692 l_l _
_’_(1_q)/e‘2 rN2( r) N2wde<0

(1—1<+ )

where dy/dN* <0 and dy/dN* <O forall s <G — 1.

Next, I apply the implicit function theorem for simultaneous equations to analyze the system

comprising Iy, (-) = 0, Iy, (-) = 0 and A°(-) = 0. Note that also A°(+) is continuously differentiable.
Different to before, the determinant is now non-zero and negative.

First, I find that d0;/dq < 0 and dN*/dq < 0. Moreover, d8;/dq > 0 if dy(8)/dN is small.
Intuitively, the flightiness of coin holders participating in the conversion game is affected by 6 and
by ¢ through its effect on the pro-rata residual value of the insolvent issuer that arises because the
borrower borrows a fixed amount. Stability is reduced when the likelihood of the borrower being

a speculator increases, which decreases adoption by making stablecoins less attractive.

Second, I find that lims_,(d8{ /dx >0 and lims_,,d0; /dx > 0. Moreover, lim,_,o5_,0d0; /dd >0,
as well as lim,_,y5_,0d6; /dd < 0 and lim;odN*/dd > 0 provided dY/d3 is small. This concludes

the proof. The results are summarized in Proposition 9.

55



A.5.8 Proof of Proposition 10

This proof comprises two parts and builds on results from the Proof of Proposition 2. We discuss
Part (a) and Part (b) of the Proof of Proposition 10 in turn.

Part (a): The issuer cannot meet its # = 2 payment obligations if N(k (1 —A)+1—x) > (N—§)6 —
NxA® /r. Rearranging gives A(G ;N,E) in Equation (22). Using the modified critical threshold in
Equation (22), we can for a given N derive the modified equilibrium condition as follows:

1 %r—K‘A 9% _ v

I(e ;N,g) = (B_a(N)_27)TZ_Tl+ %;ﬁfj:)lr I—W dA =0. (32)

As in the Proof of Proposition 2 we have that d1(6*;N,&)/d6* < 0. Moreover:

dI(6*;N.§) 1 1 6 0*r U
el LA LL D T — ) dA =] >0.
d& /_Nwé"‘lr 1-xkA N +NK(9*—}’) 1—xA -

k(0% —r)

By application of the implicit function theorem we have that d6*/d§ > 0.

Part (b): The issuer cannot meet its 1 = 2 payment obligations if N(k(1 —A) +1—1x) > N6 —
NxA(1— f1,)0/r. Rearranging gives A(8;N, f) in Equation (24), which is unique as long as f7
is not too large.

The equilibrium fundamental threshold 6*(N*; f) is governed by a modified equilibrium con-

dition from the r = 1 conversion game:

r—kA(1—f71) o % . Y .
I (1_r 0"+ (1—-kA)B ;(A) T2 \p>dA:(Q33)

10%f) = P-d)n—1 + . —

where B 7(A) takes into account that the transaction fee income at # = 2 is only generated from the
coin holders not demanding conversion at t = 1, i.e. the coin holders belonging to groups with
a sufficiently high level of a, — B, (Where Ef(l) = B). Note that the case with f = 0 nests our
benchmark model.

As in the Proof of Proposition 2 we have that d1(6*; f)/d6* < 0. Moreover:

0*—1
(1—f11)—

awvsp _

(&fle*—(l—KA)Bf(A)’cz 0" —1 0t W — (1—xA)B ((A) fra
df ’

1—xA >dA_(6*(1—fr])—r)2 K 1—xA

which is negative provided f and 7, are not too large. By application of the implicit function
theorem we have that d0*/df < 0 provided f and 1, are not too large. This concludes the proof.

PQObserve that we assume that the revenue from the + = 2 transaction fees does not count against the payment
obligation, e.g because it does not accrue in time. This assumption simplifies the analysis.
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A.6 Description of the Extension with Stablecoin Lending and Timeline

Modified stablecoin conversion game at r = 1. As before, the model is solved backwards. In
the conversion game played by the remaining active coin holders, I now distinguish between the
state z = 1, when it is observed that the borrower is a speculator who has demanded conversion,
and the state z = 2, when it is observed that she has not demanded conversion (i.e., she keeps her
coins until = 2). Appendix Section A.7.1 analyzes the equilibrium conditions for the both states,
deriving the equations for 6; and 6.

Stablecoin lending game at the end of r = 0. In the newly introduced stablecoin lending game the
borrower makes a take-it-or-leave-it-offer to coin holders, who do not yet know whether they will
be active or passive atr = 1. The borrower promises each coin holder to return 1 + r, stablecoins at
t = 2 for each coin lent out at the end of # = 0. The offer does not depend on the borrower’s motive,
which is revealed at r = 1. Since the borrower is unconstrained, stablecoin lenders face no credit
risk in the sense that they always receive the promised amount of stablecoins at # = 2.3° I show in
Appendix Section A.7.2 that the borrower optimally makes an offer that allows her to borrow the
desired amount § at the lowest cost by calibrating r, such that just enough coin holders are willing
to participate. Importantly, coin holders belonging to a group with a higher induced payment
preference for stablecoins have a higher incentive to engage in stablecoin lending. Intuitively, this
is because they benefit less from having the option to demand conversion at ¢ = 1.3

Modified stablecoin adoption game at the beginning of 1 = 0. Consumers recognize that there
are opportunities and risks associated with the introduction of stablecoin lending. The modified
adoption game is developed formally in Appendix Section A.7.3 and the modified timeline is
shown in Table A3.

The analysis of the stablecoin lending game rests on two important assumptions. First, I
assume throughout that the borrower is willing to offer costly incentives that allow her to collect
d stablecoins, regardless of whether she is a speculator or not. Second, the borrowing volume 6 is
assumed to be fixed. If § is allowed to vary, then the borrower without a speculative motive may be
able to signal her type by borrowing less. However, the existence of a separating equilibrium is not
guaranteed. Another important assumption relates to information and timing. Unlike Corsetti et
al. (2004), I do not consider a speculator who has private information about 6, but an uninformed
speculator who always demands conversion.

%This assumption is plausible and can be rationalized with smart contracts.

3]t is plausible that most of the deposit activity is, in practice, conducted by individuals who may be seen as crypto
enthusiasts. In the model these are the consumers belonging to groups with high levels of y,. I revisit this empirical
question in Section 6.
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Date 0

Date 1

Date 2

1. Adoption game:
Consumer simultaneously
decide whether to convert
their bank deposits to
stablecoins, ap; =1,

ornot, ,ap; =0

2. The stablecoin issuer
invests all funds received
from consumers who

adopt stablecoins

3. Stablecoin lending game:
The borrower makes a take-
it-or-leave-it offer to coin
holders, who simultaneously
decide whether to lend

their coins, a; = 1, or not,
ay,; = 0, given the promise
of the borrower to return
14rycoinsatt =2

4. W.p. g the borrower is a
speculator who demands
conversion and w.p. 1 —¢

she is no speculator and does

not demand conversion

5. In case the borrower demands
conversion, the issuer liquidates
assets to meet redemption requests
6. The fundamental 6 is realized
but unobserved and a fraction
of coin holders become active

7. Stablecoin conversion game:
The remaining active coin holders
receive private information x; and
simultaneously decide whether
to demand conversion to deposits,
ay; =1,ornot, a;; = 0, while
passive coin holders are dormant
8. The stablecoin issuer meets
coin holders” conversion requests
by divesting assets

9. The outcome of ther = 1
stablecoin conversion game

and the fundamental

realization 6 are observed

10. The borrower returns the
stablecoins plus interest to lenders
and the stablecoin issuer meets
her payment obligations to the
remaining active and passive coin
holders, including by minting
new coins against cash from the
borrower; if insolvent, the

issuer disburses the available
resources pro rata

10a. Consumers buy goods from
their preferred seller and convert
their money (if necessary)

10b. Sellers A and C convert the
stablecoins earned; all sellers pay
production costs with govern-
ment-backed deposits (or dollars)

Table A3: Timeline of events with stablecoin lending.

A.7 Derivations for the Extension with Stablecoin Lending

To simplify the analysis of the extended model I consider the case without positive network effects,

i.e. o/(N) =0. Sections A.7.1, A.7.2 and A.7.3 study the modified conversion game, the stablecoin

lending game and the modified adoption game. Section A.5.7 develops the Proof of Proposition 9.

A.7.1 The Modified Stablecoin Conversion Game at7 = 1

The participation in the stablecoin game affects the composition of the population of active coin

holders playing the conversion game at r = 1. Intuitively, coin holders belonging to a group with

a high level of v, benefit less from the option to demand conversion at ¢ = 1, as shown below. Let

¢ € {s+1,G} be the group of coin holders with the smallest probability of meeting a seller who

has a preference for stablecoin payments among the groups of coin holders who are willing to

participate in stablecoin lending. Hence, £ and i, are for a given § determined as:

S

_ G
= arg m;lx (Z‘g:lJrlmg]l Ye>v + Wmf) )
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where W, € [0, 1] is smaller than one if the borrower does not need all (of the indifferent) coin holders
in group ¢ to participate. Note that the initial assumption § € (0,xN) implies that ¢ > s. Moreover,
the expression in brackets on the right-hand side of Equation (34) is monotonically decreasing in ¢

and increasing in p,. It is maximized by the lowest possible ¢, meaning that (34) defines y, and p,.

As a result, the composition of the remaining active coin holder is modified as follows:
7(8) = (“sms'Ys + Z§;§+1mg7g + (1 - u@)m[YZ) / <l~1sms + Zg;lH_]mg + (1 - Hé)mé)-

Throughout the analysis I focus on the interesting case where Assumption 2 holds, which is an
extension of Assumption 1 for the model with stablecoin lending.

Assumption 2. Let® <1—0¢,r/(r—%)+06€<0,8 <x <r—yr/8 and y € (y,6 —Bi7,x).

The new bounds on k and § in Assumption 2 assure that the issuer can always fully meet the
redemption requests of the speculator, meaning that the speculator is not too large. Otherwise, the
issuer would deplete all resources and be insolvent prior to the conversion game. This is because
solvency, i.e. no rationing, at r = 1 now requires that N(k —8 /N) +8 < Nr and the new condition
for weakly positive profits is given by:

—B,T >0,Ve e {1,..,G},0 €[0,0],
1—(K—%)A BgZ g { } [— ]

which holds if y <8 —Biox and x <r—wyr/6.
Note that A;(0,8) > 0,V0 € (0,,0;),g: € {s,...,G} if:

v > ((Be—0G)t2+11)(1 = (x=38/N)) > y,VN € [0,1],

where [used 6,(8,N)=(1—(x—8/N))r/(r—x) <r/(r—x),VN € [0,1] such that 8 < kN.

State z = 1: Borrower is a speculator. Due to the conversion demand by the speculator at the
beginning of t = 1, the critical threshold A1(N:0,%,8) has to be modified:

91—1+%(1—9—;)

(K—%) (0 —r)

and the indifference condition is now given by:

AI(N;GI,S) =

r (35)

(Bg,-_ocgi)TZ_Tl ifA SAl(N;el,S)
A,-,I(A;(-)I,N,S) = rf%f(ncf%)Ael (36)

1+ (Bgi_ag,‘)TZ_Tl - W_Q);W ifA >A1(N;918),
N
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The equilibrium condition in state z = 1 when the borrower is a speculator is:

Io, (8], 6,ui;N, ) = (B—o—2Y(4;N,0))T2 — 1 (37)
d d
1 r_N_(K_N)Ae*_
* r 1 llj _
+ e;«,ug(],g) (1 _§_<K_§>A dA = 0.
(x-§)6;-n " N N

State z = 2: Borrower is not a speculator. Since the stablecoin borrower does not demand
conversion at r = 1 independent of the fundamental realization, the threshold A, (N;62,8) is higher
than A;(N;0,,8):

Az(N;e,S)E r>A|(N;01,9) (38)

and the indifference condition is now given by:

(Bg — g )12 =T if A <A;(N:6,.5)
A,"Q(A;ez,N,S) = r—(K—%)Ae —y R (39)
1+<Bgi—agi>T2—T[—W lfA >A2<N,62,8)

N

The equilibrium condition in state z = 1 when the borrower is a speculator is:

lo,(05,6,usN,8) = (B—o—2Y(6N,0))T— Ty (40)
1 (B g
+/ - (1 — . A )y
)r

d
=y - (x-%)a

Note that for a given N the equilibrium conditions in (37) and (40) diverge if 6 increases and

they converge to Equation (12) in the limit if 0.

A.7.2 The stablecoin lending game at7 =0

For 6 ™\, 0 the differential payoff of coin holder i belonging to group g; from participating in
stablecoin lending instead of abstaining from it is:

R o £Xe,— 0
Af(el,ez;'ygi,rg) = q( fgl ((K—Frg)rlfl](w—l((l—’El—OCg,.Tz))de +feel*r(gde )

0* r7K+%eiw 6
+(1—q) fgz (K+rg)ﬁ—l((l—’t1—0(gi’tz) d9+fez*rga’9 (41)

Note that dA{(0;Y,,,7¢)/dYs > 0, meaning that coin holders belonging to a group with a higher
probability of being matched with a seller who has a preference for coin payments do have a higher
benefit from lending. Intuitively, they benefit less from the option to demand conversion to cash
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att = 1, because it is more likely that they have to convert back to stablecoins at t = 2. Moreover,
d6;,/dr;=0and dA}(0*:Y,,.re)/dre > 0.

The borrower optimally makes a take-it-or-leave-it offer that allows her to borrow & coins
at the lowest possible cost by optimally calibrating r, such that just enough stablecoin holders
are willing to participate. Hence, the stablecoin lending equilibrium conditions are given by
AL (87,85;v,7¢) = 0 and Equation (34), which can be solved for the two unknowns r; and .

A.7.3 The modified stablecoins adoption game at7 =0

For ¢ \, 0 the modified differential payoff from adoption of consumer i belonging to group g; € [s, /]
is:

AY(0.0517,) = —(1+74—0gm)(8-8) (42)

g </991* (K(] —T —(Xgi’Cz) + (1 —K) <¥ [35112)> do -f-/ B&;TZ d9>
P r—x+8 _
+(1*q) (/692 (K(lrl *Otgl.’h)-f—(l*l() (HKe_*_gWBg,Tz)) do —I—/e§(1 Bgi’tz)de> .

The solution to the adoption game solves AY(8;,0;;7) = 0, where § € [y1,Y]. First, observe that

for ¢ \, 0 stablecoin lending promotes adoption by increasing AY. Second, observe that from the
analysis of the stablecoin lending game A?(6/,05;Y,) > 0 if £ > 5, which is the relevant scenario.
An important insight is that A? is independent of ¢ and of r; for ¢ > s.

If the sparse distribution of groups results in no group having the threshold type ¥, then the
marginal group s, the adoption rate N*, and ;" are given by:

s'(Y) = arg mging]l veopif Ag st v, =17
we =0
N*(s*uy) = Zg:smg

Instead, if there exists a group s such that y, = ¥, where p; € [0, 1], then:

s*(7)

N5 ) = B0 met .

argmingl y >y if Ig s.t. ¥, =7
< ‘

Observe that the fixed size of the stablecoin lending market effectively means that r} is deter-
mined autonomously by Af(ef,@z*;yg, r¢) =0, because Ip, (0,4, 11p;N,8) =0and Ip, (6, ¢,1p;N,8) =0
only depend on 8 (both, directly and indirectly via ¢ and p;) and not on r,. Similarly, A?(8;,65;7) =0
does not depend on r;, but only on & (directly). I will use this insight in the comparative statics
analysis of Proposition 9.
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A.8 Extension with Network Effects

In the version of the model with an adoption externality, the adoption rate not only affects the
fundamental equilibrium threshold in the continuation game at time 1, but also directly the
payoffs of the conversion game via the payment type probabilities. Restricting attention to out-
of-equilibrium beliefs that are consistent with coin holders behaving optimally at time 1 for any
observed N, I next show that multiple solutions to the two-stage game may co-exist. To see
this, consider the special case with one type of stablecoin holder, i.e. s = G. Here co-existence
emerges whenever there exists an adoption rate N € (0,m¢) such that Ay;(8*(¥(N)),ys) = 0 holds
with equality, where 8* solves Equation (12) for s = G and ¥(N). There is one solution where
all consumer in group G adopt stablecoins (N* = mg), one solution with no stablecoin adoption
(N* = 0) and one solution where some consumer in group G adopt stablecoins (N* = N). Similarly,
with heterogeneous stablecoin holders there can be multiple values of s such that Ag;(8*;7,,) =0

holds when evaluated at y;, while it is violated when evaluated at y,_;.

At the presence of positive network effects associated with stablecoin adoption, multiple equilib-
ria with different adoption levels can emerge. Nevertheless, the continuation equilibrium is unique
for a given level of adoption. Coordination games with strategic complementarities and informa-
tion acquisition share this feature (Hellwig and Veldkamp, 2009; Ahnert and Bertsch, 2022). Since a
higher adoption rate is associated with a lower probability of runsif d[f (1 —N) —o.(N) —2Y] /dN <0,
more favorable beliefs about stability can be self-fulfilling — they induce a higher adoption rate that
turns out to be consistent with higher stability. This multiplicity can be a concern for policymakers,
as sudden shifts in adoption can have significant stability implications that may reverberate in fi-
nancial markets, due to the role of stablecoins as a link between the crypto universe and traditional
financial markets (Barthelemy et al. 2021; Kim 2022).
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